Osteoarthritis (OA) is a common degenerative disease of the joint. Data from our lab indicates that Hedgehog (Hh) signaling is activated in human OA and murine models of OA (Lin et al., 2009, Nature Medicine). To identify Hh target genes, microarray analyses were performed to detect changes in gene expression when the Hh pathway was inhibited in human OA cartilage samples.
Regulation of Cholesterol Homeostasis by Hedgehog Signaling in Osteoarthritic Cartilage.
Sex, Specimen part, Treatment
View SamplesFriedreich's ataxia (FRDA) is an autosomal recessive neurodegenerative disease usually caused by large homozygous expansions of GAA repeat sequences in intron 1 of the frataxin (FXN) gene. FRDA patients have low FXN mRNA and frataxin protein levels when compared with heterozygous carriers or healthy controls. Presently, there is no effective treatment for FRDA, and biomarkers to measure therapeutic trial outcomes and/or to gauge disease progression are lacking. Peripheral tissues, including blood cells, buccal cells, and skin fibroblasts, can readily be isolated from FRDA patients and used to define molecular hallmarks of disease pathogenesis. However, because these tissues are not directly involved in disease pathogenesis, their relevance as models of the molecular aspects of the disease is yet to be decided. Transcriptome profiling of FRDA skin fibroblasts revealed significantly upregulated expression of genes encoding plasma membrane solute carrier proteins. Conversely, the expression of genes encoding accessory factors and enzymes involved in cytoplasmic and mitochondrial protein synthesis was consistently decreased in the FRDA cells. Finally, comparison of genes differentially expressed in FRDA fibroblasts to 3 previously published gene expression signatures defined for FRDA blood cells showed substantial overlap between the independent datasets, including correspondingly deficient expression of antioxidant defense genes. Together, these results indicate that gene expression profiling of cells derived from peripheral tissues can, in fact, consistently reveal novel molecular pathways of the disease. Overall design: We used RNA sequencing to profile the transcriptomes of primary fibroblast cell lines derived from 18 FRDA patients and 17 unaffected control individuals.
A Comprehensive Transcriptome Analysis Identifies FXN and BDNF as Novel Targets of miRNAs in Friedreich's Ataxia Patients.
Specimen part, Subject
View SamplesMYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors
MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.
Specimen part
View SamplesThe MYB gene family encodes transcription factors with a diverse range of functions in Arabidopsis. This study demonstrated that MYB5, which is expressed in trichomes and seeds, plays a central role in trichome and seed development. A microarray analysis of myb5 seeds identified other members of the MYB5 regulatory network.
The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis.
No sample metadata fields
View SamplesA complex network of inflammation succeeds somatic cell transformation and malignant disease. Immune cells and their associated molecules are responsible for detecting and eliminating cancer cells as they establish themselves as the precursors of a tumour. By the time a patient has a detectable solid tumour, cancer cells have escaped the initial immune response mechanisms. To date, no model exists to allow us to study the underlying mechanisms that govern the initial phase of the immune response as cells are transformed to become the precursors of cancer. Here we describe the development of an innovative double binary animal model designed in zebrafish for exploring regulatory programming of the myeloid cells as they respond to oncogenic transformed melanocytes. This modular system harnesses the power of zebrafish genetics. For studies of melanocyte transformation we generated a hormone-inducible binary system allowing for temporal control of different Ras-oncogene (NRasK61Q, HRasG12V, KRasG12V) expression in melanocytes allowing us to truly study melanoma initiation. This binary model was then coupled to a model for regulatory profiling of the active transcriptome of macrophages and neutrophils which is based on the in vivo biotinylation of nuclei and their subsequent isolation by streptavidin affinity purification. For the first time regulatory profiling of neutrophils as they respond to the earliest precursors of melanoma, revealed a number of factors upregulated in neutrophils that may promote progression to melanoma including fgf1, fgf6, cathepsin H, cathepsin L, galectin 1 and galectin 3. Overall design: We report the design of a double binary approach in zebrafish to study the neutrophil response to transformed melanocytes. By coupling a novel inducible model for melanocyte transformation to a model for the in vivo biotinylation of neutrophil nuclei we can isolate the neutrophil nuclei directly from the in vivo context allowing for RNA-seq analysis of the active transcriptome.
Generation of a double binary transgenic zebrafish model to study myeloid gene regulation in response to oncogene activation in melanocytes.
Specimen part, Cell line, Treatment, Subject
View SamplesTwo major subsets of rat natural killer (NK) cells can be distinguished based on their expression of either the Ly49s3 or the NKR-P1B lectin-like receptor. Ly49s3+ NK cells, but not NKR-P1B+ NK cells, express a wide range of Ly49 receptors.
Two complementary rat NK cell subsets, Ly49s3+ and NKR-P1B+, differ in phenotypic characteristics and responsiveness to cytokines.
Specimen part
View SamplesDentatorubral-pallidoluysian Atrophy (DRPLA) is a human polyQ disease caused by the expansion of a CAG strech in the atrophin-1 (at-1) gene. In all vertebrates, a second atrophin gene (at-2) is present and it encodes a related protein void of polyQ tracks. In D.melanogaster there is one conserved Atrophin (Atro) gene, ubiquitously expressed, which contains all functional domains of vertebrate Atrophins, including two polyQ stretches. To understand to what extent transcriptional alterations cause neurodegeneration and are linked to the normal functions of Atrophin, we performed a genome wide transcriptional profiling in our Drosophila models, focusing on primary events that precede neurodegeneration.
Polyglutamine Atrophin provokes neurodegeneration in Drosophila by repressing fat.
No sample metadata fields
View SamplesCD1d expression by thymocytes is required to select iNKT cells. When CD1d is expressed only on thymocytes (pLck-CD1d tg mice), iNKT cells are hyperresponsive to antigen stimulation suggesting that, in physiological conditions, these cells undergo functional education mediated by additional CD1d-expressing cells. Here, we investigated the mechanisms of this functional education. We find that peripheral iNKT cells from pLck-CD1d tg mice express significantly less SHP-1, a tyrosine phosphatase negatively regulating TCR signaling, than WT cells. iNKT cells from heterozygous SHP-1-mutated motheaten mice, displaying similar SHP-1 reduction as pLck-CD1d tg iNKT cells, are antigen-hyperresponsive. Restoring normal CD1d expression in pLck-CD1d tg mice normalizes SHP-1 expression and responsiveness of iNKT cells. In WT mice, iNKT cells upregulate SHP-1 and decrease responsiveness upon emigration from thymus to periphery. This depends on contacts with CD1d-expressing DCs. iNKT cell functional education is therefore controlled by DCs via tuning SHP-1 expression level in the periphery.
Functional education of invariant NKT cells by dendritic cell tuning of SHP-1.
Age, Specimen part, Treatment
View SamplesMammary gland development is fueled by stem cell self-renewal and differentiation. External cues from the microenvironment coupled with internal cues such as post-transcriptional regulation exerted by miRNAs regulate stem cell behavior and stem cell fate. We have identified a miR205 regulatory network required for mammary gland morphogenesis and stem cell maintenance. In the postnatal mammary gland, miR205 is predominantly expressed in the basal/stem cell enriched population. Conditional deletion of miR205 in mammary epithelial cells severely impaired stem cell self-renewal and mammary repopulating potential both in vitro and in vivo. miR205 null glands displayed significant changes in the basal population, basement membrane and stroma. NKD1 and PP2A-B56, which inhibit the Wnt signaling pathway, and AMOT, which causes YAP cytoplasmic retention and inactivation were identified as miR205 downstream effectors. Collectively these findings reveal an essential role of miR205 in mammary gland development. Overall design: WT;RosamTmG/mTmG and miR-205fl/fl;RosamTmG/mTmG cells were treated with Ad-cre and transplanted back to 3-wk-old SCID-Beige mice. Mammary epithelial cell (MECs) were isolated from pooled 40 WT;RosamTmG/mTmG cre+ and miR-205fl/fl;RosamTmG/mTmG cre+ outgrowths after 8 weeks. GFP+ basal cells (CD24+CD49fhigh) were further sorted from MECs of each group and RNA-seq were performed on WT and miR205fl/fl cre+ green basal cells to look for differentially expressed genes.
miR-205 Regulates Basal Cell Identity and Stem Cell Regenerative Potential During Mammary Reconstitution.
Specimen part, Subject
View SamplesThe knowledge of an expression network signature in end-stage heart failure (HF) diseased hearts may offer important insights into the complex pathogenesis of advanced cardiac failure, as well as it may provide potential targets for therapeutic intervention. In this study, the NGS sequencing of RNA (RNA-Seq) method was employed to obtain the whole transcriptome of cardiac tissues from transplant recipients with advanced stage of HF. The analysis of RNA-Seq data presents novel challenges and many methods have been developed for the purpose of mapping reads to genomic features and quantifying gene expression. The main goal of this work was to identify, characterize and catalogue all the transcripts expressed within cardiac tissue and to quantify the differential expression of transcripts in both physio- and pathological conditions through whole transcriptome analyses. Expression levels, differential splicing, allele-specific expression, RNA editing and fusion transcripts constitute important information when comparing samples for disease related studies. Analysis methods for RNA-Seq data are continuing to evolve. Thus, in order to find the best solution for filter generated list of differentially expressed genes, an informatic approach of NOISeq BIO method has been applied in this RNA-Seq analysis. Most of the genes obtained by filtering differentially expressed gene list, have been experimentally validated by Real time RT-PCR. Noteworthy, these findings provide valuable resources for further studies of the molecular mechanisms involved in heart ischemic response thus leading to potential novel biomarkers and targets for therapeutic intervention in the onset and progression of cardiomyopathies. Overall design: Heart biopsies from candidates for solid organ transplantation were collected and their RNA samples were used for high-throughput sequencing purposes. Libraries were sequenced on the Illumina HiSeq2000 NGS platform.
Heart failure: Pilot transcriptomic analysis of cardiac tissue by RNA-sequencing.
No sample metadata fields
View Samples