refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon GSE73066
Transcriptional profiles of pilocytic astrocytoma
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pilocytic astrocytoma is the most common type of brain tumor in pediatric population, generally connected with favorable prognosis, although recurrences or dissemination sometimes are also observed. For tumors originating in supra- or infratentorial location different molecular background was suggested but plausible correlations between transcriptional profile and radiological features and/or clinical course are still undefined. The purpose of this study was to identify gene expression profiles related to the most frequent locations of this tumor, subtypes based on various radiological features and clinical pattern of the disease. According to the radiological features presented on MRI, all cases were divided into four subtypes: solid or mainly solid, cystic with an enhancing cyst wall, cystic with a non-enhancing cyst wall and solid with central necrosis. Bioinformatic analyses showed that gene expression profile of pilocytic astrocytoma highly depends on the tumor location. Most prominent differences were noted for IRX2, PAX3, CXCL14, LHX2, SIX6, CNTN1 and SIX1 genes expression which could distinguish pilocytic astrocytomas of different location even within supratentorial region. Analysis of the genes potentially associated between radiological features showed much weaker transcriptome differences. Single genes showed association with the tendency to progression. Here we showed that pilocytic astrocytomas of three different locations could be precisely differentiated on the basis of gene expression level but their transcriptional profiles did not strongly reflect the radiological appearance of the tumor or the course of the disease.

Publication Title

Transcriptional profiles of pilocytic astrocytoma are related to their three different locations, but not to radiological tumor features.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE13909
Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Molecular mechanisms of cell cycle exit are poorly understood. A group of genes required for cell cycle exit and maintenance of cell quiescence in human fibroblasts following serum deprivation has been recently identified. Studies on lymphocytes following growth factor deprivation-induced cell cycle exit have predominantly focused on the initiation of apoptosis. A set of genes involved in lymphocyte quiescence have also been identified among genes highly expressed in resting lymphocytes and down-regulated after cell activation. In our study, proliferating IL-2-dependent human T cells were forced to exit cell cycle by growth factor withdrawal, and their gene expression profiles were examined.

Publication Title

Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8515
Identification of IL-1 and IL-6-responsive genes in human monocyte-derived macrophages
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Using whole-genome Affymetrix microarrays (HG-U133A), we characterized the transcriptome profile of cultured human macrophages stimulated for 4 h with interleukin 1 (IL-1) or interleukin 6 (IL-6). We found that, in distinction to liver cells, IL-1 is much more potent than IL-6 in modifying macrophage gene expression, although considerable heterogeneity in response of macrophages deriving from individual blood donors was observed. The obtained results permitted to identify a large number of cytokine-responsive genes. coding for proteins of unknown function that are now being studied in our laboratory. They may represent novel targets in the anti-inflammatory therapy.

Publication Title

Identification of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using microarrays.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35570
Gene signature of the post-Chernobyl papillary thyroid cancer
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Thyroid gland is among the most sensitive organs to ionizing radiation. Whether low-dose radiation-induced papillary thyroid cancer (PTC) differs from sporadic PTC is yet unknown.

Publication Title

Gene signature of the post-Chernobyl papillary thyroid cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact