refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 18 results
Sort by

Filters

Technology

Platform

accession-icon GSE32408
Expression data from TOP-GFP sorted colon cancer cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Colon cancers typically contain tumor cell populations with differential WNT signaling activity. Colon cancer cells with high WNT-activity have been attributed increase tumorigenic potential and stem cell characteristics.

Publication Title

Differential WNT activity in colorectal cancer confers limited tumorigenic potential and is regulated by MAPK signaling.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41509
Yap role in intestine
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Restriction of intestinal stem cell expansion and the regenerative response by YAP.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE41507
RSpondin1 treatment of control and Yap cKO mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

RSpondin1 adenovirus was administered to mice and intestine was isolated for expression analysis 1 week later.

Publication Title

Restriction of intestinal stem cell expansion and the regenerative response by YAP.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE43196
Genome-wide analyses of GATA6 occupancy and functions provide insights into its oncogenic mechanisms in human gastric cancer (microarray)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

To identifiy core GATA6 functions and transcriptional targets in human gastric cancer, including additional subservient transcriptional regulators via integrative analysis of GATA6 transcription factor occupancy, gene dependency, and tumor synexpression.

Publication Title

An integrative analysis reveals functional targets of GATA6 transcriptional regulation in gastric cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE39615
Transcriptomic landscape of developing Presomitic Mesoderm (PSM) from Tailbud to somite in E9.5 mouse embryo and in in vitro differentiated Paraxial mesoderm derived from mouse embryonic stem cells (mESCs).
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide to establish conditions for the differentiation of monolayer cultures of embryonic stem (ES) cells into PSM-like cells without the introduction of transgenes or cell sorting.

Publication Title

A Gradient of Glycolytic Activity Coordinates FGF and Wnt Signaling during Elongation of the Body Axis in Amniote Embryos.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment, Time

View Samples
accession-icon GSE57636
Gene expression profiling of mouse small intestinal myofibroblast after stimulation with homogenate of intestinal eosinophil
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

GeneChip Mouse Gene 2.0 ST Array was used to comprehensively investigate the changes of gene expression of small intestinal myofibroblasts of mice after stimulation with homogenates of intestinal eosinophils in vitro.

Publication Title

Eosinophil depletion suppresses radiation-induced small intestinal fibrosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE111392
Differentiation analysis of Mouse Posterior Neural tube
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Posterior embryonic axis develops from neuromesodermal progenitors which differentiate into neural tube and paraxial mesoderm

Publication Title

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i>.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE111391
Expression data of hPSCs differentiated into Paraxial mesoderm
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cell-derived tissues have wide potential for modelling developmental and pathological processes as well as cell-based therapy. However, it has proven difficult to generate several key cell types in vitro, including skeletal muscle. In vertebrates, skeletal muscles derive during embryogenesis from the presomitic mesoderm (PSM). Using PSM development as a guide, we establish conditions for the differentiation of monolayer cultures of human pluripotent stem (hPSC) cells into PSM-like cells without the introduction of transgenes or cell sorting. We differentiated human PSCs in serum-free medium supplemented with Chir99021 only (C medium) or with also the Bmp inhibitor LDN193189 (CL medium). In vivo, the PSM cells are first expressing MSGN1 (posterior PSM marker) and then mature to express Pax3 (anterior PSM marker). After 4-5 days of differentiation of hPSCs, MSGN1-positive cells were FACS-sorted and their transcriptome analyzed.

Publication Title

Recapitulating early development of mouse musculoskeletal precursors of the paraxial mesoderm <i>in vitro</i>.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE42363
Exome and whole genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With an extremely poor five-year survival rate of only 15%, identification of new therapeutic targets for EAC is of great importance. Here, we analyze the mutation spectra from the whole exome sequencing of 149 EAC tumors/normal pairs, 15 of which have also been subjected to whole genome sequencing. We identify a novel mutational signature in EACs defined by a high prevalence of A to C transversions at Ap*A dinucleotides. Statistical analysis of the exome data identified 26 genes that are mutated at a significant frequency. Of these 26 genes, only four (TP53, CDKN2A, SMAD4, and PIK3CA) have been previously implicated in EAC. The novel significantly mutated genes include several chromatin modifying factors and candidate contributors to EAC: SPG20, TLR4, ELMO1, and DOCK2. Notably, functional analyses of EAC-derived mutations in ELMO1 increase cellular invasion. Therefore, we suggest a new hypothesis about the potential activation of the RAC1 pathway to be a contributor to EAC tumorigenesis.

Publication Title

Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage, Race

View Samples
accession-icon GSE131617
Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease
  • organism-icon Homo sapiens
  • sample-icon 424 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Transcriptome analysis of post-mortem brain tissue specimens from three brain regions (BRs), entorinal, temporal and frontal cortices, of 71 Japanese brain-donor subjects to identify genes relevant to the expansion of neurofibrillary tangles. In total, 213 brain tissue specimens (= 71 subjects 3 BRs) were involved in this study. The spreading of neurofibrillary tangles (NFTs), intraneuronal aggregates of highly phosphorylated microtubule-associated protein tau, across the human brain is correlated with the cognitive severity of Alzheimers disease (AD). To identify genes relevant to NFT expansion defined by the Braak stage, we conducted exon array analysis with an exploratory sample set consisting of 213 human post-mortem brain tissue specimens from the entorinal, temporal and frontal cortices of 71 brain-donor subjects: Braak NFT stages 0 (N = 13), III (N = 20), IIIIV (N = 19) and VVI (N = 19). We identified eight genes, RELN, PTGS2, MYO5C, TRIL, DCHS2, GRB14, NPAS4 and PHYHD1, associated with the Braak stage. The expression levels of three genes, PHYHD1, MYO5C and GRB14, exhibited reproducible association on real-time quantitative PCR analysis. In another sample set, including control subjects (N = 30) and patients with late-onset AD (N = 37), dementia with Lewy bodies (N = 17) and Parkinson disease (N = 36), the expression levels of two genes, PHYHD1 and MYO5C, were obviously associated with late-onset AD. Proteinprotein interaction network analysis with a public database revealed that PHYHD1 interacts with MYO5C via POT1, and PHYHD1 directly interacts with amyloid beta-peptide 42. It is thus likely that functional failure of PHYHD1 and MYO5C could lead to AD development.

Publication Title

Genes associated with the progression of neurofibrillary tangles in Alzheimer's disease.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact