refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 428 results
Sort by

Filters

Technology

Platform

accession-icon GSE73125
Transcriptome-based profiling reveals a macrophage pedigree and identifies Irf8 as pivotal for macrophage homeostasis and function
  • organism-icon Mus musculus
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Recent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.

Publication Title

Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP069804
Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Biallelic defects of the gene encoding for the intracellular enzyme 3’ repair exonuclease (Trex)1 cause Aicardi-Goutières syndrome (AGS), a rare monogenic, lupus-like autoimmune disease, while heterozygous Trex1 loss of function alleles are associated with systemic lupus erythematosus (SLE). Trex1-/- mice develop lethal autoimmune multi-organ inflammation, which results from a chronic type I IFN response triggered by intracellular accumulation of a putative nucleic acid substrate of Trex1. This pathogenic nucleic acid is detected by the broadly, but not ubiquitously, expressed cytosolic DNA sensor cGAS, raising the question whether there are specific cell types that respond to Trex1 deficiency by production of IFN and induce autoimmunity. We generated mice with conditional knock out of the Trex1 gene and demonstrated that loss of Trex1 throughout the hematopoietic system and even selective loss in dendritic cells is sufficient to cause IFN release and autoimmunity. B cells showed no transcriptional response to Trex1 deficiency. Trex1-/- keratinocytes produced IFN but did not induce skin inflammation, whereas loss of Trex1 in cardiomyocytes triggered neither IFN response nor pathology. Trex1-deficient neurons and astrocytes did not release IFN in the CNS. In contrast, mice with selective inactivation of Trex1 in long-living CNS macrophages such as microglia locally produced IFN but did not reproduce the mild encephalitis seen in Trex1-/- mice. Collectively, individual cell types differentially respond to the loss of Trex1 and dendritic cells seem promising candidates for experiments addressing the molecular pathomechanism in Trex1 deficiency. Overall design: We sorted CD19-positive B cells from spleens of Trex1fl/fl CD19-Cre+ and Trex1fl/fl CD19-Cre- mice and isolated total RNA for library construction to perform mRNA deep sequencing.

Publication Title

Loss of Trex1 in Dendritic Cells Is Sufficient To Trigger Systemic Autoimmunity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE61500
Microarray analysis to evaluate the role of USP18 in primary microglia and the microglia cell line BV-2
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61499
Microarray analysis to evaluate the function of USP18 in the mouse CNS
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Microglia are tissue macrophages of the central nervous system (CNS) that control tissue homeostasis, and as such they are crucially important for organ integrity. Microglia dysregulation is thought to be causal for a group of neuropsychiatric, neurodegenerative and neuroinflammatory diseases, called microgliopathies. However, how the intracellular stimulation machinery in microglia is controlled is poorly understood. By using expression studies, we identified the ubiquitin-specific protease (Usp) 18 in white matter microglia that essentially contributes to microglial quiescence under homeostatic conditions. We further found that microglial Usp18 negatively regulated the activation of STAT1 and concomitant induction of interferon-induced genes thereby disabling the termination of IFN signalling. Unexpectedly, the Usp18-mediated feedback loop was independent from the catalytic domain of the protease but instead required the interacting region of Ifnar2. Additionally, the absence of Ifnar1 completely rescued microglial activation indicating a tonic IFN signal mediated by receptor interactions under non-diseased conditions. Finally, conditional depletion of Usp18 only in myeloid cells significantly enhanced the disease burden in a mouse model of CNS autoimmunity, increased axonal and myelin damage and determined the spatial distributions of CNS lesions that shared the same STAT1 signature as myeloid cells found in active multiple sclerosis (MS) lesions. These results identify Usp18 as novel negative regulator of microglia activation, demonstrate a protective role of the IFNAR pathway for microglia and establish Usp18 as potential therapeutic target for the treatment of MS.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61501
THE UBIQUITIN-SPECIFIC PROTEASE 18 CONTROLS MICROGLIA QUIESCENCE UNDER HOMEOSTATIC AND INFLAMMATORY CONDITIONS
  • organism-icon Mus musculus
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

USP18 lack in microglia causes destructive interferonopathy of the mouse brain.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98904
Expression data from Trp53- or Atm-deficient E-TCL1 murine CLL cells
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.

Publication Title

Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP045356
The Nuclear Exosome is Active and Important during Budding Yeast Meiosis
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

We have analysed the activity of the nuclear exosome during meiosis by deletion of TRF4, which encodes a key component of the exosome targeting complex TRAMP. We find that TRAMP mutants produce high levels of CUTs during meiosis that are undetectable in wild-type cells, showing that the nuclear exosome remains functional for CUT degradation. Lack of TRAMP activity stabilises ~1600 CUTs in meiotic cells, which occupy 40% of the binding capacity of the nuclear cap binding complex (CBC). Overall design: One sample each of Cbc2-associated RNA from wild-type and trf4-deleted cells at 6 hours of meiosis

Publication Title

The nuclear exosome is active and important during budding yeast meiosis.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE108649
Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome
  • organism-icon Homo sapiens
  • sample-icon 162 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome

Publication Title

Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66788
Expression data of mesenchymal cells from mouse liver
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

There are a few markers available to distinguish hepatic stellate cells (HSCs), portal fibroblasts (PFs), and mesothelial cells (MCs) in the adult mouse liver.

Publication Title

Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41035
FGFR3-shRNA induced transcriptional changes in RT112 bladder cancer cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. In this study with a bladder carcinoma cell line expressing inducible FGFR3 shRNAs, we sought to identiy transcriptional targets of FGFR3 and investigate their contribution to bladder cancer development.

Publication Title

FGFR3 stimulates stearoyl CoA desaturase 1 activity to promote bladder tumor growth.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact