During cold acclimation plants increase their freezing tolerance in response to low non-freezing temperatures. This is accompanied by many physiological, biochemical and molecular changes that have been extensively investigated. In addition, many cold acclimated plants become more freezing tolerant during exposure to mild, non-damaging sub-zero temperatures. There is hardly any information available about the molecular basis of this adaptation. However, Arabidopsis thaliana is among the species that acclimate to sub-zero temperatures. This makes it possible to use the molecular and genetic tools available in this species to identify components of sub-zero signal transduction and acclimation. Here, we have used microarrays and a qRT-PCR primer platform covering 1880 genes encoding transcription factors to monitor changes in gene expression in the accessions Columbia-0, Rschew and Tenela during the first three days of sub-zero acclimation at -3C. The results indicate that gene expression during sub-zero acclimation follows a tighly controlled time-course. Especially AP2/EREBP and WRKY transcription factors may be important regulators of sub-zero acclimation, although the CBF signal transduction pathway seems to be less important during sub-zero than during cold acclimation. Globally, we estimate that approximately 5% of all Arabidopsis genes are regulated during sub-zero acclimation. Particularly photosynthesis-related genes were down-regulated and genes belonging to the functional classes of cell wall biosynthesis, hormone metabolism and RNA regulation of transcription were up-regulated. Collectively, these data provide the first global analysis of gene expression during sub-zero acclimation and allow the identification of candidate genes for forward and reverse genetic studies into the molecular mechanisms of sub-zero acclimation.
Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation.
Specimen part, Time
View SamplesDuring low temperature exposure, temperate plant species increase their freezing tolerance in a process termed cold acclimation. During deacclimation in response to warm temperatures cold acclimated plants lose freezing tolerance and resume growth and development. While considerable effort has been directed toward understanding the molecular and metabolic basis of cold acclimation, much less information is available about the regulation of deacclimation. Here, we report metabolic (GC-MS) and transcriptional (microarrays, qRT-PCR) responses underlying deacclimation during the first 24 h after a shift of cold acclimated Arabidopsis thaliana (Columbia-0) plants to warm temperature. The data revealed a faster response of the transcriptome than of the metabolome and provided evidence for tightly regulated temporal responses at both levels. Metabolically deacclimation is associated with decreasing contents of sugars, amino acids and glycolytic and TCA cycle intermediates, indicating an increased need for carbon sources and respiratory energy production associated with growth resumption under warm temperature conditions. Deacclimation also involves extensive down-regulation of protein synthesis and changes in the metabolism of lipids and cell wall components. Altered hormonal regulation appears particularly important during deacclimation, with changes in the expression of genes related to auxin, gibberellin, brassinosteroid, jasmonate and ethylene metabolisms. Several transcription factor families controlling fundamental aspects of plant development are significantly regulated during deacclimation, emphasizing that loss of freezing tolerance and growth resumption are interrelated processes that are transcriptionally highly interrelated. Expression patterns of some clock oscillator components during deacclimation resembled those under warm conditions, indicating at least partial re-activation of the circadian clock. This study provide the first comprehensive analysis of the regulation of deacclimation in cold acclimated plants. The data indicate cascades of rapidly regulated genes and metabolites that underly the developmental switch resulting in reduced freezing tolerance and the resumption of growth. They constitute a reference dataset of genes, metabolites and pathways that are crucial during the first rapid phase of deacclimation and will be useful for the further analysis of this important but under-researched plant process.
Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana.
Specimen part, Treatment
View SamplesMitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.
Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.
Cell line, Treatment
View SamplesWe recently reported the scalable in vitro production of functional stem cell-derived cells. Here we extend this approach to generate SC- cells from Type 1 diabetic patients (T1D), a cell type that is destroyed during disease progression and has not been possible to extensively study. These cells express cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice, and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of cell stress. Using these assays, we find no major differences in T1D SC- cells compared to SC- cells derived from non-diabetic patients (ND). These results show that T1D SC- cells can be used for the treatment of diabetes, drug screening, and the study of cell biology.
Generation of stem cell-derived β-cells from patients with type 1 diabetes.
Specimen part
View SamplesPcyt2 defient mice has metabolic syndrome and insulin resistance. We used microarray to study the gene expression of these mice to
Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice.
Specimen part
View SamplesTwo human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.
Prediction of intracellular metabolic states from extracellular metabolomic data.
Cell line, Treatment
View SamplesMLL1 WT or KO MEF with and without HSP90 inhibitor treatment
Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition.
Treatment
View SamplesThe generation of insulin-producing pancreatic cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive cells from hPSC in vitro. These stem cell derived cells (SC) express markers found in mature cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.
Generation of functional human pancreatic β cells in vitro.
Specimen part, Cell line
View SamplesIn vitro differentiation of human stem cells can produce pancreatic beta cells, the insulin-secreting cell type whose loss underlies Type 1 Diabetes. As a step towards mastery of this process, we report on transcriptional profiling of >100,000 individual cells sampled during in vitro beta cell differentiation and describe the cells that emerge. We resolve populations corresponding to beta cells, alpha-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population resembling enterochromaffin cells. We show that the beta and alpha-like cells are stable for weeks in culture without exogenous growth factors and that gene expression changes associated with in vivo beta cell maturation are recapitulated in vitro. We demonstrate that stem-cell derived enterochromaffin cells can synthesize and secrete serotonin in vitro. To remove exocrine cells, we characterize a scalable re-aggregation technique that efficiently selects endocrine cells. Finally, we use a high-resolution sequencing time course to characterize gene expression dynamics during human pancreatic endocrine induction from which we develop a lineage model of in vitro beta cell differentiation. This study provides a deeper perspective on the current state of human stem cell differentiation and is a jumping-off point for future endeavors in in vitro differentiation of pancreatic islet cells and their application in regenerative medicine. Overall design: Single-cell mRNA sequencing of pluripotent stem cells differentiating in vitro towards pancreatic beta cells. The data & metadata match the initial submission of the manuscript, not the final version.
Charting cellular identity during human in vitro β-cell differentiation.
Specimen part, Subject
View SamplesMutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, though, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on upregulation of the transcription factor ZEB1 and downregulation of the mir-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis
Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).
Cell line
View Samples