Genome-wide studies have identified abundant small, non-coding RNAs including snRNAs, snoRNAs, cryptic unstable transcripts (CUTs), and upstream regulatory RNAs (uRNAs) that are transcribed by RNA polymerase II (pol II) and terminated by a Nrd1-dependent pathway. Here, we show that the prolyl isomerase, Ess1, is required for Nrd1-dependent termination of ncRNAs. Ess1 binds the carboxy terminal domain (CTD) of pol II and is thought to regulate transcription by conformational isomerization of Ser-Pro bonds within the CTD. In ess1 mutants, expression of ~10% of the genome was altered, due primarily to defects in termination of snoRNAs, CUTs, SUTs and uRNAs. Ess1 promoted dephosphorylation of Ser5 (but not Ser2) within the CTD, most likely by the Ssu72 phosphatase, and we provide evidence for a competition between Nrd1 and Pcf11 for CTD-binding that is regulated by Ess1-dependent isomerization. This is the first example of a prolyl isomerase required for interpreting the CTD code.
The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway.
No sample metadata fields
View SamplesTranscriptional profiling revealed that murine VH11 and non-VH11 CLL differed in the upregulation of specific pathways implicated in cell signaling and metabolism. We identified a gene expression signature (including Ccdc88a, Clip3, Zcchc18, Chd3 and Itm2a) that was significantly upregulated in T cell-dependent non-VH11 CLL compared with T cell-independent VH11/Vk14 or mutated IgH.TEµ CLL. Overall design: biological replicate (n=3-4) RNA-Seq experiments Please note that the ''countTable_exons_def_norm_rpkm_all.txt'' contains the ''FPKM'' column headers (as a default output setting for the HOMER software package). However, the .txt file contains RPKM value as described in the sample data processing field.
Identification of Distinct Unmutated Chronic Lymphocytic Leukemia Subsets in Mice Based on Their T Cell Dependency.
Specimen part, Cell line, Subject
View SamplesMucosal-associated invariant T (MAIT) cells are abundant in humans and recognize conserved bacterial antigens derived from riboflavin precursors, presented by the non-polymorphic MHC class I-like molecule MR1. Here, we show via transcriptomic analysis that human MAIT cells are remarkably oligoclonal in both blood and liver, display high inter-individual homology, and exhibit a restricted length CDR3ß domain of the TCRVß chain. We extend this analysis to a second sub-population of MAIT cells expressing a semi-invariant TCR conserved between individuals. Overall design: Study of CDR3 regions of TCRalpha and beta sequences
Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Non-metastatic 2 (NME2)-mediated suppression of lung cancer metastasis involves transcriptional regulation of key cell adhesion factor vinculin.
Specimen part, Cell line
View SamplesKCL-22 is a chronic myeloid leukemia (CML) cell line derived from a patient in blast crisis phase and harbors the BCR-ABL translocation. The catalytic (ATP-competitive) BCR-ABL inhibitors imatinib and nilotinib have dramatically improved CML patient outcome, but the development of resistance remains a clinical challenge. The recent identification of allosteric BCR-ABL inhibitors, such as GNF-2, which target the enzyme by binding to the myristoyl pocket rather than catalytic site of ABL1, may provide a strategy to broadly overcome resistance to the class of ABL1 ATP competitive inhibitors. We therefore wanted to use the ClonTracer barcoding system to compare the clonal responses of KCL-22 to imatinib, nilotinib and GNF-2. RNA-seq was employed to characterize genetic alterations and gene expression signatures in the pooled cell populations resistant to BCR-ABL inhibitors as well as single clones showing differential response to the three inhibitors. Overall design: mRNA profiling of the subpopulations and single clones of human CML cell line KCL-22 that contribute to BCR-ABL inhibitor resistance
Studying clonal dynamics in response to cancer therapy using high-complexity barcoding.
No sample metadata fields
View SamplesThe non-small cell lung cancer (NSCLC) cell line HCC827 harbors an activating EGFR mutation (exon 19 deletion) that confers sensitivity to the FDA-approved EGFR inhibitor erlotinib. By applying the ClonTracer barcoding system, we were able to show the presence of pre-existing sub-populations in HCC827 that contribute to erlotinib resistance. Prior studies implicated that MET amplification confers resistance to erlotinib in this cell line. Therefore we examined the effects of the c-Met inhibitor crizotinib on the barcoded HCC827 population when treated either sequentially or simultaneously with both inhibitors. Despite the significant reduction in barcode complexity, the erlotinib/crizotinib combination treatment failed to eradicate all of the resistant clones implying the presence of an erlotinib/crizotinib dual resistant subpopulation. We performed transcriptome profiling (RNA-seq) to elucidate the potential resistance mechanisms of the dual resistant subpopulation in comparison to vehicle-treated or single agent erlotinib-resistant HCC827 cell populations as controls. Overall design: mRNA profiling of the subpopulations of human NSCLC cell line HCC827 that contribute to EGFR inhibitor erlotinib and MET inhibitor crizotinib resistance
Studying clonal dynamics in response to cancer therapy using high-complexity barcoding.
No sample metadata fields
View SamplesMetformin, a commonly used drug prescribed to treat type-2 diabetes, has been found to extend health span and delay cancer incidence and progression. Here, we report that starting chronic treatment with low dose of metformin (0.1% w/w in diet) at one year of age extends health and lifespan in male mice, while a higher dose (1% w/w) was toxic. Treatment with low dose metformin mimicked some of the benefits of calorie restriction, such as improved physical performance, increased insulin sensitivity, and reduced LDL and cholesterol levels. At a molecular level, metformin increased AMP-activated protein kinase activity without attenuation of the mitochondrial electron transport chain activities. Metformin treatment resulted in lower chronic inflammation and increased antioxidant protection, suggesting that the ability of metformin to improve health of laboratory animals may stem from these factors. Our results support that metformin supplementation could be beneficial in extending health and lifespan in humans.
Metformin improves healthspan and lifespan in mice.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage
View SamplesWe surveyed the genome-wide DNA methylation levels and gene expression patterns in patients with pediatric acute lymphoblastic leukemia. Using Affymetrix U133 Plus 2.0 GeneChips, we identified a relatively small set of CpG sites that are highly correlated with gene expression.
Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia.
Specimen part
View SamplesWe report here that human mitochondria contain small RNA including microRNA, piRNA, tRNA, rRNA, and RNA repeats. Mitochondria from human cells were purified and RNA isolated. Small RNAs were purified, library generated and analyzed by Illumina Hiseq 2000 system. The sequencing generated 19.5 and 17.7 million reads from HEK-293 and HeLa respectively. 91% and 97% sequences of HEK293 and HeLa respectively were annotated to various classes of small RNA. The total percentage of 4.21 and 2.58 sequences from HEK293 and HeLa respectively was found to be of miRNA. Further, we found only 1.2 % sequences from both the libraries aligned to mitochondrial genome. These results suggest that there is efficient transport of nuclear encoded small RNA to mitochondria. The small RNA in mitochondria may regulate critical cellular processes. Overall design: Analyzing the smallRNA in human mitochondria from two human cell lines (HEK-293 and HeLa).
Systematic analysis of small RNAs associated with human mitochondria by deep sequencing: detailed analysis of mitochondrial associated miRNA.
Specimen part, Cell line, Subject
View Samples