In almost every countries the proportion of people over 60 years is growing faster that any other age group. Increased life expectancy is leading to the characterization of specific aspects of aging for the various physiological systems. The study of healthy aging is important to design strategies capable to maximize the health and to prevent chronic diseases in older people. Immunosenscence reflects the age-related changes of the immune system and the reduced capacity of elderly people to cope with new infections. To elucidate changes in gene expression related to systemic aging and immunosenescence in an unbiased manner we performed comparative microarray analysis on whole blood cell from healthy middle-aged versus elderly men, and correlated results with functional measurements of aerobic capacity. Blood cells from elderly subjects showed age-related changes in the expression of several markers of immunosenescence, inflammation and oxidative stress, and showed impairments in metabolic and biosynthetic capacities.
Aging: a portrait from gene expression profile in blood cells.
No sample metadata fields
View SamplesLow-oxygen stress associated with natural phenomena such as waterlogging, results in widespread transcriptome changes and a metabolic switch from aerobic respiration to anaerobic fermentation. High-throughput sequencing of small RNA libraries obtained from low-oxygen stressed and control root tissue identified a total of 65 unique microRNA (miRNA) sequences from 46 families, and 14 trans-acting small interfering RNA (tasiRNA) from 3 families. Low-oxygen stress resulted in changes to the abundance of 46 miRNAs from 19 families, and all 3 tasiRNA families. Chemical inhibition of mitochondrial respiration caused similar changes in expression in a majority of the low-oxygen responsive small RNAs analysed. Our data indicate that miRNAs and tasiRNAs play a role in gene regulation and possibly developmental responses to low oxygen, and that a major signal for these responses is likely to be dependent on mitochondrial function. Keywords: Small RNA transcriptome analysis Overall design: Examination of root tissue under 2 different environments, control and low oxygen
Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis.
Age, Subject
View SamplesActivated NOTCH1 induces T-ALL in mice when transduced in bone marrow (BM) cells. T-ALL cells activate the calcineurin/NFAT pathway in vivo (Medyouf H. et al. Nat Med 2007 [PMID 17515895]).
Leukemia-initiating cell activity requires calcineurin in T-cell acute lymphoblastic leukemia.
Specimen part, Treatment
View SamplesEffect on the transcriptome of an insertion in the gene At3g08610 encoding a subunit of mitochondrial complex I
Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night.
Age, Specimen part, Time
View SamplesRegulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8<br></br>Comparison of transcript profiles between wild type Columbia and ccr1 (carotenoid and chloroplast regulatory) mutant, which contains a mutation in At1g77300 (SDG8)
Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8.
Age
View SamplesPrimary aldosteronism (PA) is the most frequent form of secondary arterial hypertension. Mutations in different genes increase aldosterone production in PA, but additional mechanisms may contribute to increased cell proliferation and aldosterone producing adenoma (APA) development. We performed transcriptome analysis in APA and identified retinoic acid receptor alpha (RARα) signaling as a central molecular network involved in nodule formation. To understand how RARα modulates adrenal structure and function, we explored the adrenal phenotype of male and female Rarα knockout mice. Inactivation of Rarα in mice led to major structural disorganization of the adrenal cortex in both sexes, with increased adrenal cortex size in female mice and increased cell proliferation in males. Abnormalities of vessel architecture and extracellular matrix were due to decreased Vegfa expression and modifications in extracellular matrix components. On the molecular level, Rarα inactivation leads to inhibition of non-canonical Wnt signaling, without affecting the canonical Wnt pathway nor PKA signaling. Our study suggests that Rarα contributes to the maintenance of normal adrenal cortex structure and cell proliferation, by modulating Wnt signaling. Dysregulation of this interaction may contribute to abnormal cell proliferation, creating a propitious environment for the emergence of specific driver mutations in PA.
Retinoic acid receptor α as a novel contributor to adrenal cortex structure and function through interactions with Wnt and Vegfa signalling.
Sex, Age, Specimen part
View Samples4 week old Arabidopsis plants, of ecotype Columbia, SALK_084897 or SAIL_303_D08 were either grown under normal conditions or grown under normal conditions for before having a moderate light and drought treatment applied. Light and drought treatment was applied by withholding water for 5 days prior to transfer to 300 uE m-2 s-1 light conditions. Samples were collected after 3 days of treatment or for the same age plants grown under normal conditions.
The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress.
No sample metadata fields
View SamplesEffect of high light on directly exposed and shaded, distal Arabidopsis leaf tissue
Systemic and intracellular responses to photooxidative stress in Arabidopsis.
No sample metadata fields
View Samples4 days old seedlings grown on MS without sucrose under continuous light of sco3-1 and Col have been used to extract RNA. Microarray analysis has been performed with three independent biological replicates<br></br>
The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis.
Age, Time
View Samplescomparative expression between stromal MS5 cells treated with (MS5_PD18) or without (MS5_DMSO) MEKi
Interleukin-18 produced by bone marrow-derived stromal cells supports T-cell acute leukaemia progression.
Cell line
View Samples