Deregulation of translational control is an obligatory step in oncogenesis; however, this step has not been addressed by prior genomic and transcriptional profiling studies of cancer biology. Here we simulate the translational deregulation found in cancer by ectopically over expressing translation initiation factor eIF4E in primary human mammary epithelial cells; and examine its impact on cell biology and the pattern of ribosomal recruitment to mRNA genome wide. Over expression of eIF4E allows cells to bypass M0 premature growth arrest, but does not confer other malignant properties. However, in concert with hTERT, eIF4E imparts cells with growth and survival autonomy - and profoundly alters the pattern of polyribosome-associated mRNA encoding cell cycle and apoptosis regulators. The translational response to increased eIF4E is not only a unidirectional activation of oncogenic drivers, but also consists of complex intrinsic translational mechanisms that mitigate the acquisition of neoplastic properties.
Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors.
No sample metadata fields
View SamplesSeveral aspects common to a Western lifestyle, including obesity and decreased physical activity, are known risks for gastrointestinal cancers. There is an increasing amount of evidence suggesting that diet profoundly affects the composition of the intestinal microbiota. Moreover, there is now unequivocal evidence linking a dysbiotic gut to cancer development. Yet, the mechanisms through which high-fat diet (HFD)-mediated changes in the microbial community impact the severity of tumorigenesis in the gut, remain to be determined.
High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity.
Sex, Age, Specimen part, Treatment
View SamplesTo analyse and understand the differentially expressed genes following treatment with synthetic androgen (R1881) Overall design: LNCaP or LAPC4 cells were plated in RPMI 1640 media with no phenol red and with 5% charcoal stripped serum, sodium pyruvate, penicillin and streptomycin. After 48h (to allow adnrogen deprivation), fresh media was added, with 96% ethanol or the synthetic androgen R1881 (10nM concentration). 24h later, cells were harvested for RNA purification using the QIAGEN RNeasy plus purification kit. RNA was then enriched for mRNA and then sequenced.
RNA sequencing data of human prostate cancer cells treated with androgens.
Treatment, Subject
View SamplesTo study the transcriptome of human prostate cancer cells, RNA-seq experiments were performed. Overall design: RNA was harvested after 72h of steroid deprivation to study the basal transcriptome of LNCaP and 22rv1 cells, two human AR-positive prostate cancer cell lines,
Reprogramming of Isocitrate Dehydrogenases Expression and Activity by the Androgen Receptor in Prostate Cancer.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Cell line
View SamplesThe two most common melanoma histopathologic subtypes, superficial spreading (SSM) and nodular melanoma (NM), are believed to represent sequential phases of linear progression from radial to vertical growth. Studies suggest, however, that SSM and NM are biologically distinct. We utilized an integrative genomic approach to examine the possibility that SSM and NM are the result of independent pathways characterized by unique molecular alterations. Cell lines including SSM, NM, metastatic melanoma, and melanocyte controls were evaluated for copy number changes and differential mRNA expression using single nucleotide polymorphism array (SNP 6.0, Affymetrix) and gene array (U133A 2.0, Affymetrix). Data sets were integrated to identify copy number alterations that correlated with gene expression, and array results were validated using immunohistochemistry on human tissue microarrays (TMAs) and an external data set. The functional effect of genomic deletion was assessed by lentiviral overexpression. Integrative genomics revealed 8 genes in which NM/SSM-specific copy number alterations were correlated with NM/SSM differential gene expression (P<0.05, Spearmans rank). Pathways analysis of differentially expressed genes (N=114) showed enrichment for metabolic-related processes. SSM-specific genomic deletions (DIS3, MTAP, G3BP2, SEC23IP, USO1) were verified in an expanded panel of cell lines, and forced overexpression of MTAP in SSM resulted in reduced cell growth. Metabolism-related gene ALDH7A1 was verified as overexpressed in NM using human TMAs.The identification of recurrent genomic deletions in SSM not present in NM challenges the linear model of melanoma progression and supports the unique molecular classification of SSM and NM.
Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression.
Cell line
View SamplesAlternative mRNA splicing is an important mechanism for regulation of gene expression. Changes in gene expression contribute to the pathogenesis of heart failure. However, changes in mRNA splicing have not been systematically examined in heart disease. We hypothesized that mRNA splicing is changed in diseased hearts.
Heart failure-associated changes in RNA splicing of sarcomere genes.
No sample metadata fields
View SamplesSynthetic DNA-binding proteins have found broad application in gene therapies and as tools for interrogating biology. Engineered proteins based on the CRISPR/Cas9 and TALE systems have been used to alter genomic DNA sequences, control transcription of endogenous genes, and modify epigenetic states. Although the activity of these proteins at their intended genomic target sites have been assessed, the genome-wide effects of their action have not been extensively characterized. Additionally, the role of chromatin structure in determining the binding of CRISPR/Cas9 and TALE proteins to their target sites and the regulation of nearby genes is poorly understood. Characterization of the activity these proteins using modern high-throughput genomic methods would provide valuable insight into the specificity and off-target effects of CRISPR- and TALE-based genome engineering tools. We have analyzed the genome-wide effects of TALE- and CRISPR-based transcriptional activators targeted to the promoters of two different endogenous human genes in HEK293T cells using a variety of high-throughput DNA sequencing methods. In particular, we assayed the DNA-binding specificity of these proteins and their effects on the epigenome. DNA-binding specificity was evaluated by ChIP-seq and RNA-seq was used to measure the specificity of these activators in perturbing the transcriptome. Additionally, DNase-seq was used to identify the chromatin state at target sites of the synthetic transcriptional activators and the genome-wide chromatin remodeling that occurs as a result of their action. Our results show that these genome engineering technologies are highly specific in both binding to their promoter target sites and inducing expression of downstream genes when multiple activators bind to a single promoter. Moreover, we show that these synthetic activators are able to induce the expression of silent genes in heterochromatic regions of the genome by opening regions of closed chromatin and decreasing DNA methylation. Interestingly, the transcriptional activation domain was not necessary for DNA-binding or chromatin remodeling in these regions, but was critical to inducing gene expression. This study shows that these CRISPR- and TALE-based transcriptional activators are exceptionally specific. Although we detected limited binding of off-target sites in the genome and changes to genome structure, these off-target event did not lead to any detectable changes in gene regulation. Collectively, these results underscore the potential for these technologies to make precise changes to gene expression for gene and cell therapies or fundamental studies of gene function. Overall design: HEK293T cells were transfected in triplicate with plasmids expressing synthetic transcription factors. The synthetic TFs were either (a) dCas9-VP64 fusion protein and a targeting guide RNA (gRNA), or (b) a TALE-VP64 fusion protein engineered to bind to a specific target site in the genome. As a control, cells were transfected with plasmids expressing GFP. After transfection, RNA-seq was used to identify both on-target and off-target binding sites for the synthetic TFs. The data in this submission were generated using the TALE transfection experiments.
Genome-wide specificity of DNA binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators.
No sample metadata fields
View SamplesPublished molecular profiling studies in patients with lymphoma suggested the influence of hypoxia inducible factor-1 alpha (HIF1) targets in prognosis of DLBCL. Yet, the role of hypoxia in hematological malignancies remains unclear. We observed that activation of HIF1 resulted in global translation repression during hypoxic stress in DLBCL. Protein translation efficiency as measured using 35S-labeled methionine incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely inhibited and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with a decrease in mitochondrial function. Screening of primary DLBCL patient samples revealed that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies demonstrated that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide strong support for the direct contribution of HK2 in B-cell lymphoma development and suggest that HK2 is a key metabolic driver of the DLBCL phenotype.ne incorporation revealed a 50% reduction in translation upon activation of HIF1. Importantly, translation was not completely blunted and expression of clinically correlated hypoxia targets such as GLUT1, HK2, and CYT-C was found to be refractory to translational repression under hypoxia in DLBCL cells. Notably, hypoxic induction of these genes was not observed in normal primary B-cells. Translational repression was coupled with decrease in mitochondrial function. Screening of DLBCL patient samples identified that expression of HK2, which encodes for the enzyme hexokinase 2, was significantly correlated with DLBCL phenotype. Genetic knockdown studies show that HK2 is required for promoting growth of DLBCL under hypoxic stress. Altogether, our findings provide more definitive proof of direct contribution of HK2 in development of B-cell lymphoma and suggest that HK2 is a key metabolic driver of DLBCL phenotype.
Role of hypoxia in Diffuse Large B-cell Lymphoma: Metabolic repression and selective translation of HK2 facilitates development of DLBCL.
Cell line, Treatment
View SamplesSynthetic transcription factors can be applied in many areas of biotechnology, medicine, and basic research. In contrast to current methods based on engineering new DNA-binding proteins, we show that Cas9 fused to a transcriptional activation domain can be targeted by combinations of guide RNA molecules to induce the expression of endogenous human genes. This simple approach for targeted gene activation circumvents the need for engineering new proteins and will enable widespread synthetic gene regulation. Overall design: HEK293T cells were transfected with plasmid expressing Cas9-VP64 fusion protein and a guide RNA. As a control, empty guide RNA was transfected. Gene expression was then measured using mRNA-seq, and differential expression calculated using DESeq. All experiments were performed in biological duplicates or triplicates.
RNA-guided gene activation by CRISPR-Cas9-based transcription factors.
Cell line, Subject
View Samples