Background: The FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine palate. Results: We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously published gene expression data for the developing palate. In addition selected immunostain validations were carried out. Conclusions: This report provides an RNA-Seq based atlas of gene expression patterns driving palate development at microanatomic resolution. This FACEBASE resource is designed to fuel discovery by the craniofacial research community. Overall design: Laser capture microdissection and RNA-seq were used to generate gene expression profiles of different compartments of the mouse E14.5 developing palate
Molecular Anatomy of Palate Development.
No sample metadata fields
View SamplesSingle cell RNA-seq is a powerful methodology, but with important limitations. In particular, the process of enzymatic separation of cells at 37O C can be expected to result in artifact changes in gene expression patterns. We here describe a dissociation method that uses protease from a psychrophilic microorganism with high activity in the cold. The entire procedure is carried out at 6O C or colder, where mammalian transcriptional machinery is largely inactive. To test this method we carry out single cell RNA-seq on about 9,000 cells, comparing the results of the cold method with a method using 37O C incubations for multiple times. We show that the cold active protease method results in a great reduction in gene expression artifacts. Overall design: Whole mouse post natal day 1 kidney cells were dissassociated by either a cold active protease or an enzyme cocktail for varying lengths of time. The gene expression profiles of the four groups of cells were determined by drop-seq / RNA-seq.
Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development.
Subject
View SamplesWe characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.
A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesWe present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesLaser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the facial mesenchyme, composed of neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium.
A gene expression atlas of early craniofacial development.
Specimen part
View SamplesMouse FGF15 and human FGF19 are orthologous proteins that regulate bile acid metabolism. However, other hepatic functions of FGF15/19 are not well characterized.
FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway.
Sex, Specimen part
View SamplesThe brain renin-angiotensin system (RAS) stimulates resting metabolic rate in part through a mechanism involving suppression of the circulating RAS. This effect appears to be mediated through a reduction in angiotensin AT2 receptor (AT2R) signaling within inguinal fat. To examine the molecular mechanisms underlying this effect, mice with hyperactivity of the brain RAS (“sRA” mice, expressing human renin via the synapsin promoter and human angiotensinogen via its own promoter) and littermate controls were chronically infused with vehicle or the AT2R specific agonist, CGP-42112a (CGP, 90 ng/hr, 8 wk, sc). To identify altered signaling pathways, total RNA was isolated from inguinal adipose tissue and transcript abundance was quantitated by RNA-Seq. Overall design: Four groups of mice were studied: controls receiving either a saline infusion (CON) or a specific angiotensin type 2 receptor agonist (CON_CGP), transgenic mice with specific activation of the brain renin-angiotensin receiving either a saline infusion (SRA) or a specific angiotensin type 2 receptor agonist (SRA_CGP). A sample size of N=3-4 was used for each of the four groups.
Suppression of Resting Metabolism by the Angiotensin AT2 Receptor.
Sex, Specimen part, Cell line, Subject
View SamplesThe objective of this study is to create an encyclopedia of all genes expressed in the glomerular endothelial cell under normal and diabetic conditions. We utilized Tie2-GFP transgenic mice to mark cells of the glomerular endothelium. To induce diabetic nephropathy (DB), a genetic model of DB, BKS.Cg-m +/+ Leprdb/J from Jax laboratories was used. We utilized fluorescent activated cell sorting (FACS) to isolate glomerular endothelial cells from normal and diabetic mice. The RNAs from these samples were isolated and utilized to hybridize to microarrays, which offers a powerful, efficient and effective method for the creation of a gene expression atlas.
Gene expression programs of mouse endothelial cells in kidney development and disease.
Age, Specimen part
View SamplesThe long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.
Gene expression programs of mouse endothelial cells in kidney development and disease.
Sex
View Samples