refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 320 results
Sort by

Filters

Technology

Platform

accession-icon SRP075376
MCF10A H-Ras RNA-Seq
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Paired-end sequencing of Vector and H-Ras expressing cell lines: p53-del and WT-p53 We found that activated forms of H-Ras and PIK3CA oncogene lead to repression of p63, a p53 family member. They also lead to induction of EMT, a cancer-related process. Our results suggest that, through Ras regulation of p63, this oncogene can drive mammary epithelial cells towards greater invasive ability. Overall design: 4 samples analyzed with 3 replicates each, control samples for each H-Ras line are the Vector cell line created at the same time

Publication Title

Repression of p63 and induction of EMT by mutant Ras in mammary epithelial cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE31812
Mutant p53 Disrupts Mammary Acinar Morphogenesis via the Mevalonate Pathway
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

p53 is a frequent target for mutation in human tumors and previous studies have revealed that these missense mutant proteins can actively contribute to tumorigenesis. To elucidate how mutant p53 might contribute to mammary carcinogenesis we employed a three-dimensional (3D) culture model. In 3D culture non-malignant breast epithelial cells form structures reminiscent of acinar structures found in vivo, whereas breast cancer cells form highly disorganized and in some cases invasive structures. We found that mutant p53 depletion is sufficient to phenotypically revert breast cancer cells to a more acinar-like morphology. Genome-wide expression analysis identified the sterol biosynthesis, or mevalonate, pathway as significantly upregulated by a tumor-derived mutant p53. Using statins and sterol biosynthesis intermediates, we demonstrate that this pathway is both necessary and sufficient for the phenotypic effects of mutant p53 on breast tissue architecture. Mutant p53 associates with the sterol gene promoters at least partly via the SREBP transcription factors. Finally, p53 mutation correlates with higher levels of sterol biosynthesis genes in human breast tumors. This activity of mutant p53 not only contributes insight into breast carcinogenesis, but also implicates the mevalonate pathway as a new therapeutic target for tumors bearing such mutations in p53.

Publication Title

Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17561
Isoform-specific transcriptional activity of overlapping targets that respond to thyroid hormone receptors a1 and b1
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that control multiple aspects of physiology and development. TRs are expressed in vertebrates as a series of distinct isoforms that exert distinct biological roles. We wished to determine if the two most widely expressed isoforms, TRa1 and TRb1, exert their different biological effects by regulating different sets of target genes. Using stably transformed HepG2 cells and a microarray analysis, we were able to demonstrate that TRa1 and TRb1 regulate a largely overlapping repertoire of target genes in response to T3 hormone. However, these two isoforms display very different transcriptional properties on each individual target gene, ranging from a much greater T3-mediated regulation by TRa1 than by TRb1, to near equal regulation by both isoforms. We also identified TRa1 and TRb1 target genes that were regulated by these receptors in a hormone-independent fashion. We suggest that it is this gene-specific, isoform-specific amplitude of transcriptional regulation that is the likely basis for the appearance and maintenance of TRa1 and TRb1 over evolutionary time. In essence, TRa1 and TRb1 adjust the magnitude of the transcriptional response at different target genes to different levels; by altering the ratio of these isoforms in different tissues or at different developmental times, the intensity of T3 response can be individually tailored to different physiological and developmental requirements.

Publication Title

Isoform-specific transcriptional activity of overlapping target genes that respond to thyroid hormone receptors alpha1 and beta1.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE29159
Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: a unique regulatory repertoire associated with renal clear cell carcinomas.
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Thyroid hormone receptors (TRs) are hormone-regulated transcription factors that regulate a diverse array of biological activities, including metabolism, homeostasis, and development. TRs also serve as tumor suppressors, and aberrant TR function (via mutation, deletion, or altered expression) is associated with a spectrum of both neoplastic and endocrine diseases. A particularly high frequency of TR mutations has been reported in renal clear cell carcinoma (RCCC) and in hepatocellular carcinoma (HCC). We have shown that HCC-TR mutants regulate only a fraction of the genes targeted by wild-type TRs, but have gained the ability to regulate other, unique, targets. We have suggested that this altered gene recognition may contribute to the neoplastic phenotype. Here, to determine the generality of this phenomenon, we examined a distinct set of TR mutants associated with RCCCs. We report that two different TR mutants, isolated from independent RCCC tumors, possess greatly expanded target gene specificities that extensively overlap one another, but only minimally overlap that of the WT-TRs, or those of two HCC-TR mutants. Many of the genes targeted by either or both RCCC-TR mutants have been previously implicated in RCCC, and include a series of metallothioneins, solute carriers, and genes involved in glycolysis and energy metabolism. We propose that TR mutations from RCCC and HCC are likely to play tissue-specific roles in carcinogenesis, and that the divergent target gene recognition patterns of TR mutants isolated from the two different types of tumors arises from different selective pressures during development of RCCC versus HCC.

Publication Title

Mutant thyroid hormone receptors (TRs) isolated from distinct cancer types display distinct target gene specificities: a unique regulatory repertoire associated with two renal clear cell carcinomas.

Sample Metadata Fields

Disease, Cell line, Treatment

View Samples
accession-icon E-MEXP-2506
Transcription profiling by array of rice grown in different light and temperature cycles
  • organism-icon Oryza sativa
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Rice (Oryza sativa, ssp. Japonica, cv. Nipponbare 1) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.<br></br>

Publication Title

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon E-MTAB-275
Transcription profiling by array of rice Indica 93-11 after growth in different light and temperature conditions
  • organism-icon Oryza sativa
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Rice (Oryza sativa, spp. Indica, cv. 93-11) plants were grown in a Conviron PGR 15 growth chamber using precise control of temperature, light, and humidity.<br></br>Diurnal (driven) conditions included 12L:12D light cycles and 31C/20C thermocycles in three different combinations. These were: photocycles (LDHH), 12 hrs. light (L)/12 hrs. dark (D) at a constant temperature (31C; HH); photo/thermocycles (LDHC): 12 hrs. light (L) /12 hrs. dark (D) with a high day temperature (31C) and a low night temperature (20C); and thermocycles (LLHC): continuous light (LL) with 12 hrs. high/12 hrs. low temperature (31C, day; 20C, night). Light intensity and relative humidity were 1000 micromol m-2s-2 and 60%, respectively.<br></br>Three-month-old rice plants were entrained for at least one week under the respective condition prior to initiation of each experiment. Leaves and stems from individual rice plants were collected every four hours for 48 hrs in driven (diurnal) conditions followed by a two day freerun spacer under continuous light/temperature followed by two additional days of sampling under the same continuous free run condition.

Publication Title

Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon E-MEXP-1304
Transcription profiling of Arabidopsis seedlings grown under thermocycles and/or photocycles or continuous conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In most organisms biological processes are partitioned, or phased to specific times over the day through interactions between external cycles of temperature (thermocycles) and light (photocycles), and the endogenous circadian clock. This orchestration of biological activities is achieved in part through an underlying transcriptional network. To understand how thermocycles, photocycles and the circadian clock interact to control time of day specific transcript abundance in Arabidopsis thaliana, we conducted four diurnal and three circadian two-day time courses using Affymetrix GeneChips (ATH1). All time courses were carried out with seven-day-old seedlings grown on agar plates under thermocycles (HC, hot/cold) and/or photocycles (LD, light/dark), or continuous conditions (LL, continuous light; DD, continuous dark, HH, continuous hot). Whole seedlings (50-100), including roots, stems and leaves were collected every four hours and frozen in liquid nitrogen. The four time courses interrogating the interaction between thermocycles, photocycles and the circadian clock were carried out as two four-day time courses. Four-day time courses were divided into two days under diurnal conditions, and two days under circadian conditions of continuous light and temperature. Thermocycles of 12 hours at 22C (hot) and 12 hours at 12C (cold) were used in this study. The two time courses interrogating photoperiod were conducted under short days (8 hrs light and 16 hrs dark) or long days (16 hrs light and 8 hrs dark) under constant temperature. In addition, the photoperiod time courses were in the Landsberg erecta (ler) accession, in contrast to the other time courses that are in the Columbia (col) background. The final time course interrogated circadian rhythmicity in seedlings grown completely in the dark (etiolated). Dark grown seedlings were synchronized with thermocycles, and plants were sampled under the circadian conditions of continuous dark and temperature.

Publication Title

Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules.

Sample Metadata Fields

Age, Time

View Samples
accession-icon GSE140945
Mouse transcriptome reveals signatures of protection and pathogenesis in human tuberculosis
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE144708
Distinct signature, origin and dynamics of macrophages in the peripheral and central nervous system
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE140943
Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis [blood array]
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Characterisation of blood and lung global transcriptional responses to Mycobacterium tuberculosis infection in distinct mouse models of Tuberculosis

Publication Title

Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact