Mammalian epidermal stem cells maintain homeostasis of skin epidermis and contribute to its regeneration throughout adult life. While two-dimensional mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cyclic AMP, FGF and R-spondin signaling with inhibition of BMP signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 months, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro. Overall design: We establish an organoid culture system for long-term expansion of mouse epidermal stem cells. Using histological methods as well as low-coverage multiplexed RNA sequencing, we show that cultured organoids resembled interfollicular epidermis. We analyzed a total of 23 samples, including 6 controls that are isolated from the skin of mice. None-passaged as well as cultured organoids were compared with replicates. Differences growth factors and small molecules that allow expansion of organoids were compared with replicates.
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures.
Cell line, Subject
View SamplesStress induces undifferentiated stem cells to differentiate in a way that looks like normal differentiation
Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation.
No sample metadata fields
View SamplesExtracts from the rhizome of Cimicifuga racemosa (black cohosh) are increasingly popular as herbal alternative to hormone replacement therapy (HRT) for the alleviation of postmenopausal disorders. However, the molecular mode of action and the active principles are presently not clear. Previously published data have been largely contradictory. We, therefore, investigated the effects of a lipophilic Cimicifuga rhizome extract on the ER+ breast cancer MCF-7 cells at transcriptional level in comparision to 17beta-estradiol and the ER antagonist tamoxifen. With the extract 431 genes were regulated more than 1.5 fold. The overall expression pattern differed from those of 17-estradiol or the estrogen receptor antagonist tamoxifen. We observed an enrichment of genes in an anti-proliferative and apoptosis-sensitizing manner, together with an increase of mRNAs coding for gene products involved in several stress response pathways. Regulated genes of these functional groups were highly overrepresented among all regulated genes. Various transcripts coding for oxidoreductases were induced, as for example the cytochrome P450 family members 1A1 and 1B1. In addition, some transcripts associated with antitumor but also tumor-promoting activity were regulated.
Gene expression profiling reveals effects of Cimicifuga racemosa (L.) NUTT. (black cohosh) on the estrogen receptor positive human breast cancer cell line MCF-7.
No sample metadata fields
View SamplesWe have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin for 3 or 6 hours to induce the p38/MAP kinase pathway. In order determine transcriptional effects dependent on MSK1/2 kinase activity, H89 inhibitor was used in the study. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 3 h or 6h (in duplicates) either with or without 15-min pre-treatment with MSK1/2 inhibitor H89 (10 uM). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.
H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.
No sample metadata fields
View SamplesProducts derived from roots of Leuzea carthamoides DC. (maral root) are being promoted as anti-aging and adaptogenic. The phytoecdysteroids are considered as active principles with numerous beneficial effects, but little is known about the pharmacological properties of Leuzea extracts. We, therefore, investigated the effects of a lipophilic Leuzea root extract on ER+ breast cancer MCF-7 cells at transcriptional level in comparison to 17beta-estradiol and the ER antagonist tamoxifen. With the extract 241 genes were regulated more than 1.5 fold. We observed gene regulation in an anti-proliferative and pro-apoptotic manner.
Effects of Leuzea carthamoides on human breast adenocarcinoma MCF-7 cells determined by gene expression profiling and functional assays.
No sample metadata fields
View SamplesWe have employed gene expression profiling in order to identify targets of transcriptional response to stress in resting mouse Swiss 3T3 fibroblasts, either untreated (control) or treated with anisomycin to induce the p38/MAP kinase pathway. Overall design: Serum starved (72 h 0.2% FCS) mouse 3T3 cells were treated with anisomycin (188.5 nM) for 1 h (in duplicates). Untreated, serum-starved cells were used as a control. RNA was collected and gene expression profiling using strand-specific RNA-seq was performed.
H3S28 phosphorylation is a hallmark of the transcriptional response to cellular stress.
No sample metadata fields
View SamplesAnaplastic lymphoma kinase (ALK) is expressed in around 60% of glioblastomas and conveys tumorigenic function. Therefore, ALK inhibitory strategies with alectinib were investigated in glioblastoma cells. We demonstrated that alectinib inhibited proliferation and clonogenicity of ALK expressing glioblastoma initiating cells, whereas cells without ALK expression or after ALK depletion via knockdown showed primary resistance against alectinib. The aim of this analysis was to investigate molecular mechanisms of alectinib mediated treatment effects in the ALK expressing S24 cells, which represent a primary glioblastoma cell culture, and after knockdown of ALK.
cMyc and ERK activity are associated with resistance to ALK inhibitory treatment in glioblastoma.
Specimen part, Cell line, Treatment
View SamplesMutations in the enzymes IDH1 and IDH2 have been identified in a wide variety of tumors like glioma, chondrosarcoma, thyroid cancer, lymphoma, melanoma, and in acute myeloid leukemia. Mutated IDH1/2 produces the metabolite 2-hydroxyglutarate (2HG), which interferes with epigenetic regulation of gene expression, and thus may promote tumorigenesis.
Pan-mutant-IDH1 inhibitor BAY1436032 is highly effective against human IDH1 mutant acute myeloid leukemia in vivo.
Specimen part, Treatment
View SamplesDespite advances in investigating functional aspects of osteoblast (OB) differentiation, especially studies on how bone proteins are deposited and mineralized, there has been little research on the intracellular trafficking of bone proteins during OB differentiation. Collagen synthesis and secretion is markedly upregulated upon Ascorbic Acid (AA) stimulation. Understanding the mechanism by which collagen is mobilized in specialized OB cells is important for both basic cell biology and diseases involving defects in bone secretion and deposition. RabGTPases are major regulators on protein trafficking throughout the cell. In this study, we identified the Rab GTPases that are upregulated during 5-day AA differentiation of OBs using microarray analysis, namely Rab1, Rab3d and Rab27b.
Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts.
Specimen part, Cell line
View SamplesTime series of eleven breast cancer samples subjected to different cold ischemic stress of up to 3 hr post tumor excision.
Effects of tissue handling on RNA integrity and microarray measurements from resected breast cancers.
Subject
View Samples