refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE54980
Sulforaphane protects from T cell mediated autoimmune disease by inhibition of interleukin 23 and 12 in dendritic cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Sulforaphane (SFN), an isothiocyanate, is part of an important group of naturally occurring small molecules with antiinflammatory properties. Even though the published reports are vague, most are best conceivable with an inhibition of T cell functions. We therefore analyzed the effect of SFN on T cell-mediated autoimmune disease. Feeding mice with SFN protected from severe experimental autoimmune encephalomyelitis (EAE). Disease amelioration was associated with reduced interleukin (IL)-17 and IFN-gamma expression in draining lymph nodes. In vitro, SFN treatment of T cells did not directly alter T cell cytokine secretion. In contrast, SFN treatment of dendritic cells (DC) inhibited TLR4-induced IL-12 and IL-23 production and the cytokine profile of T cells stimulated by SFN-treated DC. SFN suppressed TLR4-induced nuclear factor kappa B (NFB) activity, without affecting the degradation of its inhibitor (IB). Instead, SFN treatment of DC resulted in strong expression of the stress response protein heme oxygenase-1 (HO-1), which interacts with NFB p65 and inhibits its activity. Consistent with these findings, HO-1 bound to p65 and subsequently inhibited the p65 promoter activity within the IL23a and IL12b promoter region. Importantly, SFN suppressed Il23a and Il12b expression in vivo and silenced Th17/Th1 responses within the CNS . Our data show that SFN improves Th17/Th1-mediated autoimmune disease by inducing HO-1 and inhibiting p65-regulated IL-23 and IL-12 expression.

Publication Title

Sulforaphane protects from T cell-mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE17187
Gene expression analysis of 3 node positive vs 3 node negative intestinal type gastric cancers by gene array technology.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastric cancer is one of the most common causes of cancer-related deaths worldwide. The lymph node status represents the strongest prognostic factor. Due to its extremely poor prognosis, the identification of novel therapeutic targets is urgently needed. Therefore, we aimed to assess differentially expressed genes in nodal negative versus nodal positive intestinal type gastric carcinoma by GeneChip array technique. The transcriptional profile of 6 gastric cancers with and without lymphatic dissemination was analyzed. A total of 115 transcripts were found to be up- and 219 to be down-regulated in node positive compared with node negative gastric cancers. Next we searched for differentially expressed GPCRs. We identified 52 GPCRs and GPCR-related genes, which were up- or down-regulated with a fold change factor greater 1.5.

Publication Title

Vascular CXCR4 expression - a novel antiangiogenic target in gastric cancer?

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36444
LBH589 (Panobinostat) treatment of a gastric cancer cell line
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

LBH589 is a histone deacetylase (HDAC) inhibitor, treatment and changes in acetylated histones alters gene expression

Publication Title

Pan-histone deacetylase inhibitor panobinostat sensitizes gastric cancer cells to anthracyclines via induction of CITED2.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE61256
Obesity accelerates epigenetic aging of human liver
  • organism-icon Homo sapiens
  • sample-icon 133 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Obesity accelerates epigenetic aging of human liver.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE61260
Human liver gene expression data from subjects of varying ages
  • organism-icon Homo sapiens
  • sample-icon 133 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

N=134 human liver samples from morbidly obese patients and healthy controls were analysed by array-based mRNA expression profiling. Liver messenger RNA expression datasets from the German patients were generated on the HuGene 1.1 ST gene array The purpose of the study was to correlate these gene expression data with body mass index and with an epigenetic measure of age acceleration based on DNA methylation data.

Publication Title

Obesity accelerates epigenetic aging of human liver.

Sample Metadata Fields

Sex, Age, Disease, Subject

View Samples
accession-icon GSE23698
Expression data of SW480 cells with TFAP2E overexpression and without TFAP2E (empty vector control)
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

AP2 transcription factors play important roles in development and cancer, we tried to clarify the role of the so far uncharacterised TFAP2E in colorectal cancer.

Publication Title

TFAP2E-DKK4 and chemoresistance in colorectal cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE48452
Human liver biopsy of different phases from control to NASH
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder in industrialized countries. Liver samples from morbidly obese patients (N=45) with all stages of NAFLD and controls (N=18) were analysed by array-based DNA methylation and mRNA expression profiling. NAFLD-specific expression and methylation differences were seen for nine genes coding for key enzymes in intermediate metabolism (including PC, ACLY, PLCG1) and insulin/insulin-like signalling (including IGF1, IGFBP2, PRKCE) and replicated by bisulfite pyrosequening (independent N=39). Transcription factor binding sites at NAFLD-specific CpG sites were >1000-fold enriched for ZNF274, PGC1A and SREBP2. Intra-individual comparison of liver biopsies before and after bariatric surgery showed NAFLD-associated methylation changes to be partially reversible. Post-bariatric and NAFLD-specific methylation signatures were clearly distinct both in gene-ontology and transcription factor binding site analyses, with >400-fold enrichment of NRF1, HSF1 and ESRRA sites. Our findings provide one of the first examples of treatment-induced epigenetic organ remodelling in humans.

Publication Title

DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE26174
Gene Expression Profiling of the Retina after Transcorneal Electrical Stimulation in Wildtype Brown Norway Rats
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Purpose: To investigate the effect of transcorneal electrical stimulation (TES) on the retina of wildtype Brown Norway (BN) rats by gene expression profiling.

Publication Title

Gene expression profiling of the retina after transcorneal electrical stimulation in wild-type Brown Norway rats.

Sample Metadata Fields

Sex, Age

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact