The epicardium, an epithelium covering the heart, is essential for cardiac development. During embryogenesis, the epicardium provides instructive signals for the growth and maturation of cardiomyocytes and for coronary angiogenesis. We generated an in vitro model of human embryonic epicardium derived from human pluripotent stem cells (hPSC-epi). These cells were able to differentiate into cardiac fibroblasts (cf) and smooth muscle cells (smc) in vitro (hPSC-epi-cf and hPSC-epi-smc respectively). Furthermore, we showed that they improved maturation of hPSC-derived cardiomyocytes (hPSC-cardio) in vitro while neural crest cells derived from hPSC (hPSC-NC) could not. Furthermore, they improved survival of hPSC-cardio and stimulated angiogenesis when injected in a rat model of myocardium infarction. We performed mRNA sequencing of the hPSC-epi, hPSC-epi-cf, hPSC-smc and hPSC-NC in order to identify the secreted molecules specifically produced by the hPSC-epi and/or its derivatives in comparison with the hPSC-NC. Vascular smooth muscle cells have different embryonic origins and different properties depending on their location in the body. The coronary smooth muscle cells come from the epicardium while the aortic ones come from the mesoderm or the neural crest. We performed mRNA sequencing of human coronary artery smc and human aortic smc to identify a specific signature of the coronary smc. We also compared the genes expressed in the hPSC-epi-smc and the smc derived from hPSC-derived lateral plate mesoderm. Overall design: For hPSC-derived samples the three replicates are coming from three different in vitro differentiations from H9. For the human primary cells, the triplicates are technical replicates (three different wells from the same culture at the same passage)
Epicardial cells derived from human embryonic stem cells augment cardiomyocyte-driven heart regeneration.
Specimen part, Subject
View SamplesNr4a1 deficient rats (Nr4a1-/-) were developed using the fawn hooded hypertensive rat (FHH), which provided a genetic background susceptible to kidney injury. Both groups of animals were evaluated for blood pressure, proteinuria, renal function, and whole transcriptome gene pathway changes. Gene expression profiling was performed at week 8, 16, and 24 using kidney from FHH and Nr4a1-/- rats. To identify differentially expressed gene between FHH and Nr4a1-/- two statistical methods were utilized: (1) FWER (family-wise error rate) procedure, p<0.05 and fold-change 1.2 or greater; and/or (2) Benjamani and Hochberg FDR (false discovery rate) using p<0.05, and fold-change 1.2 or greater. Two-way ANOVA using a p<0.01 or lower was performed to identify strain X time interaction effects between groups. Gene networks and functional analysis were evaluated through the use of Ingenuity Pathways Analysis .
Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD.
Age, Specimen part
View SamplesFat metabolism is also peturbed after the diagnosis of type 1 diabetes. Patients have less fat in the liver (4) and increased fasting lipid oxidation (5) compared to controls. Similarly, in a BioBreeding rat model of type 1 diabetes, the diabetes-prone animals develop a reduced respiratory quotient compared to non-diabetic rats before the onset of hyperglycemia, consistent with an increased use of fatty acids relative to carbohydrates as an energy substrate (6).
Longitudinal analysis of hepatic transcriptome and serum metabolome demonstrates altered lipid metabolism following the onset of hyperglycemia in spontaneously diabetic biobreeding rats.
Age, Specimen part
View SamplesIn D. melanogaster males, X chromosome monosomy is compensated by chromosome-wide transcription activation. We found that complete dosage compensation during embryogenesis takes surprisingly long. Although the activating Dosage Compensation Complex (DCC) associates with the chromosome and acetylates histone H4 early, many genes are not compensated. Acetylation levels on gene bodies continue to increase for several hours after gastrulation in parallel with progressive compensation. Constitutive genes are compensated earlier than developmental genes. Remarkably, later compensation correlates with longer distances to DCC binding sites. This time-space relationship suggests that DCC action on target genes requires maturation of the active chromosome compartment. Overall design: RNA-seq in 8 embryonic stages in total 54 single embryos.
Progressive dosage compensation during Drosophila embryogenesis is reflected by gene arrangement.
Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Global analysis of the relationship between JIL-1 kinase and transcription.
Specimen part, Cell line
View SamplesProfiling of changes in steady state RNA levels upon RNAi-mediated knockdown of the chromosomal kinase JIL-1 in Drosophila S2 cells.
Global analysis of the relationship between JIL-1 kinase and transcription.
Specimen part
View SamplesTo characterize how symbiotic bacteria affect the lolecular and cellular mechanisms of epithelial homeostasis, human colonic Caco-2 cells
Epithelial cell proliferation arrest induced by lactate and acetate from Lactobacillus casei and Bifidobacterium breve.
No sample metadata fields
View SamplesThe aim of this study is to identify genes implicated in the early steps of the autoimmune process, prior to inflammation in type 1 diabetes. Early Insulin AutoAntibodies (E-IAA) have been used as subphenotypic marker to select individual animals as type 1 diabetes prone and to compare gene expression patterns with insulin autoantibody negative NOD.
Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity.
Age
View SamplesIn order to identify the developmental changes controlling the switch from disease susceptibility to resistance, we performed global gene expression analysis on non-infected and infected intestinal tissues taken from 4-day- and 7-day-old animals.
Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection.
Age
View Samplesto analyse the transcriptomic response of human intestinal tissue engrafted in SCID mice to Shigella infection
Virulent Shigella flexneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression.
No sample metadata fields
View Samples