refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 876 results
Sort by

Filters

Technology

Platform

accession-icon GSE70763
Gene profiling of naive, virus-induced and inflammatory-induced memory CD8 T lymphocytes in homeostatic condition and after stimulation.
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptome analysis comparing naive, protective and non-protective spleen memory CD8 T lymphocytes were conducted to identify key functions associated with memory CD8-mediated immune protection. Memory CD8 T cells generated in response to influenza or vaccinia infection (Flu-memory and VV-memory) were compared to inflammatory memory cells (TIM) that were generated by peptide in inflammatory context. Gene expression analysis was performed on quiescent and re-stimulated CD8 T cells.

Publication Title

Immune signatures of protective spleen memory CD8 T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP148786
A Transcriptomic Analysis of the Development of Skeletal Muscle Atrophy in Cancer-Cachexia in Tumor-Bearing Mice
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations prior to wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Overall design: Lewis Lung Carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wks age with tumor allowed to develop for 1, 2, 3, or 4 wks and compared to PBS injected control. Muscle wasting was evident at 4 wks LLC. Animals were anesthetized using isoflourane and gastrocnemius muscles were collected for analysis. Conclusions: Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.

Publication Title

Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15583
Neuroblastoma cell lines under normoxic and hypoxic conditions
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques.

Publication Title

The l1-l2 regularization framework unmasks the hypoxia signature hidden in the transcriptome of a set of heterogeneous neuroblastoma cell lines.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP044194
Transcriptome analysis of WT and ATRX KO Cast x 129 mouse ES cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Analysis of gene expression in WT and ATRX KO Cast x 129 Mouse ES cells Overall design: Paired end RNA-seq analysis of PolyA selected RNA and PolyA depeleted RNA from in both wildtype nd ATRX knocked out Castx129 Mouse ES Cells

Publication Title

ATRX Plays a Key Role in Maintaining Silencing at Interstitial Heterochromatic Loci and Imprinted Genes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE28621
Transcriptional profiles of macrophages in resolving inflammation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have performed a comprehensive transcriptional analysis of specific monocyte and macrophage (M) subsets during an acute self-resolving inflammatory insult. Following initial induction of acute inflammation, tissue resident (Resident) M are rapidly cleared from the inflammatory foci, only becoming recoverable as inflammation resolves. Monocytes are recruited to the inflammatory lesion where they differentiate into M. We term these monocyte-derived M inflammation-associated to distinguish them from Resident M which are present throughout the inflammatory response and can renew during the resolution of inflammation by proliferation. Comparative analysis of the Mo and M populations (both inflammation-associated and Resident M) identifies select genes expressed in subsets of inflammation-associated and Resident M that play important roles in the resolution of inflammation and/or for immunity, including molecules involved in antigen presentation, cell cycle and others associated with immaturity and M activation.

Publication Title

The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35525
Pivotal role of HMGA1 gene signature in highly metastatic breast cancer
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Analysis of MDA-MB-231 breast cancer cells depleted for High Mobility Group A1 (HMGA1) using siRNA. HMGA1 is involved in invasion and metastasis in breast cancer cells. Results identify the specific transcriptional program induced by HMGA1 in highly metastatic breast cancer cells.

Publication Title

HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE47049
Expression data from wild type and Gata6-deficient tissue resident peritoneal macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tissue resident macrophages are notoriously heterogeneous, exhibiting discrete phenotypes as a consequence of tissue- and micro-anatomical niche-specific functions, but the molecular basis for this is not understood. We resolved a restricted transcriptional profile for the self-renewing population of peritoneal resident macrophages, which is expressed during homeostasis and inflammation and distinct from other M. Prominent within this profile was the expression of Gata6. This study represents a characterisation of the role of Gata6 in peritoneal resident macrophage phenotype. We used microarrays to determine the patterns of gene expression in peritoneal resident M in the absence of GATA-6 against wild type.

Publication Title

The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE119662
Genetic modifier of TGF-beta1 stimulated pulmonayr fibrosis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Expression profiling of pulmonayr fibrosis prone and fibrosis resistant strains of mice with transgenic overexpression of TGF-beta1

Publication Title

Laminin α1 is a genetic modifier of TGF-β1-stimulated pulmonary fibrosis.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE24250
The transcriptional modulator H2AFY marks Huntington's disease activity in men and mice
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

To accelerate the development of disease-modifying therapeutics for Huntingtons disease (HD), a dynamic biomarker of disease activity and treatment response is critically needed.

Publication Title

Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE17714
11 Neuroblastoma cell lines under normoxic and hypoxic conditions
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques.

Publication Title

A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact