refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 78 results
Sort by

Filters

Technology

Platform

accession-icon GSE76999
Capacity of yolk sac macrophages, fetal liver and adult monocytes to colonize an empty niche and develop into functional tissue resident macrophages
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Tissue-resident macrophages can derive from yolk sac macrophages, fetal liver monocytes or adult bone marrow monocytes. Whether these precursors can give rise to transcriptionally identical alveolar macrophages is unknown. Here, we transferred traceable yolk sac macrophages, fetal liver monocytes, adult bone marrow monocytes or adult alveolar macrophages as a control, into the empty alveolar macrophage niche of neonatal Csf2rb-/- mice. All precursors efficiently colonized the alveolar niche and generated alveolar macrophages that were transcriptionally almost identical, with only 22 genes that could be linked to their origin. Underlining the physiological relevance of our findings, all transfer-derived alveolar macrophages self-maintained within the lungs for up to 1 year and durably prevented alveolar proteinosis. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages.

Publication Title

Yolk Sac Macrophages, Fetal Liver, and Adult Monocytes Can Colonize an Empty Niche and Develop into Functional Tissue-Resident Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE52857
Expression data in splenic DC subsets in wild type and Xbp1 deficient mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Xbp1 is a major transcription factor in the unfolded protein response. To uncover its function in DCs we generated a conditional KO for Xbp1 in dendritic cells. We here compare the expression of mRNAs in two different splenic DC subpopulations, CD8a and CD11b DCs in both WT and KO mice.

Publication Title

The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75225
Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Self-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engrafted in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.

Publication Title

Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP199794
Identification of novel regulators of Th2 cells in HDM model (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 1120 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Naïve CD4 T cells differentiate into functionally diverse subsets of T helper (Th) cells. Gene expression profiling has the capacity to pinpoint factors that regulate subset differentiation and function, however obtaining transcriptional profiles of pure populations has been challenging. We performed single cell RNA-Sequencing (scRNA-Seq) of T helper cells from lymph node, lung and airways in a mouse model of asthma. scRNA-Seq resolved transcriptional profiles of naïve CD4 T, Th1, Th2, Treg cells and various activated states including a population responding to type I interferons. A trajectory for Th2 cell differentiation was delineated over time, with Th2 cells acquiring follicular T helper cell characteristics in the lung-draining lymph node before undergoing further modifications in the lung. A feature of airway Th2 cells was their enrichment for genes associated with lipid metabolism and experiments with blockers of key metabolic pathways supported roles for glucose and lipid metabolism in Th2 cell differentiation. Overall design: Mice were sentized and challanged with HDM extract intranasally. scRNA-Seq was performed in 384-well format. The relevant organs (either BAL, lung or mLN) were isolated, rapidly processed, stained for a panel of surface markers and single cell sorted within approximately 90 minutes of organ harvest. In total 764 memory T helper cells (CD3+CD4+CD44+) were sorted directly into lysis buffer using a BD Influx from two independent mice 15 days after sensitization and challenge with HDM as described above. In addition, 50 naïve T Helper cells (CD3+CD4+CD62LhiCD44lo), 50 Treg cells (CD3+CD4+CD25hi) from mLN of a mouse not exposed to HDM; 200 ST2+ mLN and 82 ST2+ lung T helper cells (CD3+CD4+CD44+ST2+CD25-) were sort purified at day 10 of the HDM model. SMART-Seq2 libraries were prepared using the method described in Picelli et al. (Nature Methods 2013) by the Eukaryotic Single Cell Genomics national facility at SciLife Laboratory, Stockholm.

Publication Title

Single-Cell RNA Sequencing of the T Helper Cell Response to House Dust Mites Defines a Distinct Gene Expression Signature in Airway Th2 Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE144708
Distinct signature, origin and dynamics of macrophages in the peripheral and central nervous system
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE144702
Distinct signature, origin and dynamics of macrophages in the peripheral and central nervous system (microarray)
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We performed ontogenic, transcriptomic and spatial characterization of sciatic nerve Macs (snMacs). Using multiple fate-mapping systems, we show that snMacs do not derive from the early embryonic precursors colonizing the CNS, but originate primarily from late embryonic precursors and get replaced by bone marrow-derived Macs over time. Using single-cell profiling, we identified a tissue-specific core signature of snMacs and found two spatially-separated snMacs: Relmα + Mgl1 + snMacs in the epineurium and Relmα Mgl1 snMacs in the endoneurium. Globally, snMacs lack most core signature genes of microglia, with only the endoneurial subset expressing a restricted number of these genes. Single-cell transcriptomics revealed that in response to injury both snMacs respond differently and that the PNS, in contrast to the CNS, is permissive to prolonged engraftment of monocyte-derived Macs recruited upon injury.

Publication Title

Profiling peripheral nerve macrophages reveals two macrophage subsets with distinct localization, transcriptome and response to injury.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83895
Transcriptome analysis of innate intestinal intraepithelial lymphocytes
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Characterization of intraepithelial ILC on the basis of CD8 and Ly49E expression

Publication Title

A Murine Intestinal Intraepithelial NKp46-Negative Innate Lymphoid Cell Population Characterized by Group 1 Properties.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE100393
Transcriptional profiling of small intestinal lamina propria Dendritic cells by microarray
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

CD103+CD11b+ dendritic cells (DC) are unique to the intestine, but the factors governing their differentiation are unclear. Here we show that transforming growth factor receptor 1 (TGF beta 1) has an indispensable, cell intrinsic role in the development of these cells. Deletion of Tgfbr1 results in markedly fewer intestinal CD103+CD11b+ DCs and a reciprocal increase in the CD103CD11b+ DC subset. Transcriptional profiling identifies markers that define the CD103+CD11b+ DC lineage, including CD101, TREM1 and Siglec-F, and shows that the absence of CD103+CD11b+ DCs in CD11c-Cre.Tgfbr1fl/fl mice reflects defective differentiation from CD103CD11b+ intermediaries, rather than an isolated loss of CD103 expression. The defect in CD103+CD11b+ DCs is accompanied by reduced generation of antigen-specific, inducible FoxP3+ regulatory T (Treg) cells in vitro and in vivo, and by reduced numbers of endogenous TH17 cells in the intestinal mucosa. Thus, TGF beta 1 mediated signalling may explain the tissue-specific development of these unique DCs.

Publication Title

TGFβR signalling controls CD103<sup>+</sup>CD11b<sup>+</sup> dendritic cell development in the intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE149619
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE149618
Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection (microarray)
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The phenotypic and functional dichotomy between IRF8+ type 1 and IRF4+ type 2 conventional dendritic cells (cDC1-cDC2) is well accepted; it is unknown how robust this dichotomy is under inflammatory conditions, when additionally monocyte-derived cells (MCs) become competent antigen presenting cells (APC). Using single-cell technologies in models of respiratory viral infection, we found that lung cDC2s acquired expression of Fc receptor CD64 shared with MCs, and of IRF8 shared with cDC1s. These inflammatory (Inf-)cDC2s were superior in inducing CD4+ T helper (Th) cell polarization while simultaneously presenting antigen to CD8+ T cells. When carefully separated from inf-cDC2s, MCs lacked APC function. Inf-cDC2 matured in response to cell-intrinsic toll-like receptor and type 1 interferon receptor signaling, upregulated an IRF8-dependent maturation module and acquired antigens via convalescent serum and Fc receptors. Since hybrid inf-cDC2s are easily confused with monocyte-derived cells, their existence could explain why APC functions have been attributed to MCs.

Publication Title

Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact