The neuronal ceroid lipofuscinoses (NCL) are a group of childhood inherited neurodegenerative disorders characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of different forms of NCL suggest that common disease mechanisms may be involved. Here, we have performed quantitative gene expression profiling of cortex from targeted knock out mice produced for Cln1 and Cln5 to explore NCL-associated molecular pathways. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating cytoskeletal dynamics and neuronal growth cone stabilization display similar aberrations. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products, Cap1, Ptprf and Ptp4a2. The evidence from the gene expression data was substantiated by immunohistochemical staining data of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in beta-tubulin and actin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in CLN1 and CLN5. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCL.
Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases.
Sex, Age, Specimen part, Disease
View SamplesCircadian and metabolic processes are codependent. This experiment was designed to understand how a high fat diet affects circadian gene expression in the liver. Circadian gene expression in the liver is necessary for energy balance.
Reprogramming of the circadian clock by nutritional challenge.
Specimen part
View SamplesIn this analysis we have compared the gene expression profiles of lymphatic endothelial cells (LECs) isolated from human intestine (iLECs) versus LECs from human skin (dLECs).
Liprin (beta)1 is highly expressed in lymphatic vasculature and is important for lymphatic vessel integrity.
Specimen part
View SamplesThe experiments were performed to understand the molecular basis of plant growth promotion in rice by Rhodotorula mucilaginosa JGTA-S1, an endophytic yeast from Typha angustifolia
Early changes in shoot transcriptome of rice in response to Rhodotorula mucilaginosa JGTA-S1.
Specimen part, Treatment, Time
View SamplesTo adapt the lives of organisms to the day-night cycle, evolution has built a complex machinery, whose molecular components are able to anticipate and drive changes in organism behavior and metabolism. A mutual bidirectional interaction exists between circadian abnormalities and development of diseases.
Circadian clock regulates the host response to Salmonella.
Age, Specimen part
View SamplesSIN3 is a master transcriptional scaffold protein. SIN3 interacts with RPD3 and other accessory proteins to form a histone modifying complex. A single Sin3A gene encodes multiple isoforms of SIN3, of which SIN3 187 and SIN3 220 are the predominant isoforms. Previous studies demonstrated that SIN3 isoforms play non-redundant roles during fly development. In the current study, we sought to investigate the genes regulated by SIN3 187. Overall design: S2 cells and cells carrying a stable transgene of SIN3 187HA (SIN3 187HA cells) were treated with 0.07 µM CuSO4. CuSO4 treatment led to ectopic expression of SIN3 187HA. S2 cells were used as a control. Following induction, total mRNA was extracted. mRNA profiling of these samples were performed by deep sequencing using Illumina Hiseq2500. Three biological replicates were performed.
Genome-wide studies reveal novel and distinct biological pathways regulated by SIN3 isoforms.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage, Cell line, Treatment, Subject, Time
View SamplesThe beneficial effects of glucocorticoids (GCs) in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis. Omics technologies such as DNA microarray analysis are widely used to study the changes in gene expression and have been successfully implemented in biomarker identification. In addition, time series studies of gene expression enable the identification of correlations between kinetic profiles of glucocorticoid receptor (GR) target genes and diverse modes of transcriptional regulation. This study presents a genome-wide microarray analysis of both our and published Affymetrix HG-U133 Plus 2.0 data in GCs-sensitive and -resistant ALL. GCs-sensitive CCRF-CEM-C7-14 cells were treated with dexamethasone at three time points (0 h, 2 h and 10 h). The treated samples were then compared to the control (0 h).
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Disease, Disease stage, Treatment, Subject, Time
View SamplesThe beneficial effects of glucocorticoids (GCs) in acute lymphoblastic leukemia (ALL) are based on their ability to induce apoptosis. Omics technologies such as DNA microarray analysis are widely used to study the changes in gene expression and have been successfully implemented in biomarker identification. In addition, time series studies of gene expression enable the identification of correlations between kinetic profiles of glucocorticoid receptor (GR) target genes and diverse modes of transcriptional regulation. This study presents a genome-wide microarray analysis of both our and published Affymetrix HG-U133 Plus 2.0 data in GCs-sensitive and -resistant ALL. GCs-sensitive CCRF-CEM-C7-14 cells were treated with dexamethasone at three time points (0 h, 2 h and 10 h). The treated samples were then compared to the control (0 h).
Erg and AP-1 as determinants of glucocorticoid response in acute lymphoblastic leukemia.
Specimen part, Cell line, Treatment, Time
View SamplesPglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice are all more sensitive than wild type (WT) mice to dextran sulfate sodium (DSS)-induced colitis. The purpose of this study was to determine which genes are differentially induced by DSS treatment in the colon of Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice compared to WT mice. The results demonstrate higher induction of proinflammatory gene expression in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice than in WT mice after DSS treatment. The majority of genes whose expression is increased in Pglyrp1-/-, Pglyrp2-/-, Pglyrp3-/-, and Pglyrp4-/- mice but not in WT mice are interferon-inducible genes. Thus, Peptidoglycan Recognition Proteins Pglyrp1, Pglyrp2, Pglyrp3, and Pglyrp4 protect mice from excessive inflammatory response and damage to the colon by limiting expression of interferon-inducible genes in the colon.
Peptidoglycan recognition proteins protect mice from experimental colitis by promoting normal gut flora and preventing induction of interferon-gamma.
Specimen part
View Samples