Female mouse models of diabetic peripheral neuropathy (DPN) have not yet been identified. Our aim is firstly to demonstrate that female BTBR ob/ob mice display robust DPN and secondly, to perform relevant comparisons with non-diabetic and gender-matched controls. Lastly, microarray technology was employed to identify dysregulated genes and pathways in the SCN and DRG of female BTBR mice. Dorsal root ganglia (DRG) and sciatic nerve (SCN) were removed from female mice, RNA isolated and processed for gene expression profiling to identify differentially expressed genes using Affymetrix GeneChip Mouse Genome 430 2.0 Arrays.
BTBR ob/ob mice as a novel diabetic neuropathy model: Neurological characterization and gene expression analyses.
Sex, Specimen part
View SamplesCharacterization of the underlying genetic defects in patients with a rare and peculiar phenotype is challenging. Here we have utilized whole genome expression profiling, and identified a homozygous germline mutation in the DDB2 gene in a patient with several facial tumors. The feasibility of using blood derived RNA, diminishing costs of the technology, and the limited number of samples needed provide this approach a powerful new tool that may substantially aid in such gene identification efforts.
Blood-derived gene-expression profiling in unravelling susceptibility to recessive disease.
No sample metadata fields
View SamplesPlant hormones interact with each other and regulate gene expression to control plant growth and development. To understand the complex network, accumulation of comprehensive and integrative data of gene expression and hormone concentration is important. Using microarray, global gene expression profile was analyzed to compare with plant hormone concentration in 14 parts of rice at reproductive stage.
UniVIO: a multiple omics database with hormonome and transcriptome data from rice.
No sample metadata fields
View SamplesThe epiblast (foremost embryonic ectoderm) generates all three germ layers and therefore has crucial roles in the formation of all mammalian body cells. Regulation of epiblast gene expression is poorly understood due to the difficulty of manipulating epiblast tissues in vivo. In the present study, using the self-organizing properties of embryonic stem cells (ESCs), we generated and characterized epiblast-like tissue in three-dimensional (3D) culture. We identified significant genome-wide expression changes in this epiblast-like tissue. Additionally, we identified the significance of the Fgf/Erk and ectoderm formation pathways, using the bioinformatics resource IPA and DAVID. We first focused on Fgf5, which ranked in the top 10 among discovered genes. Toward functional analysis of Fgf5, we developed efficient methods of genome engineering (CRISPR/Cas9) and RNA interference (RNAi). Notably, we show one-step generation of an Fgf5 reporter line, null and in/del mutants. Furthermore, mutation types correlated well with CRISPR/Cas9 activity. For time- and dose-dependent depletion of Fgf5 over the course of development, we generated an ESC line harboring a drug-inducible short hairpin RNA cassette integrated by the Tol2 transposon system (pRNAi). Our methods provide a framework for a broad array of applications in the areas of mammalian genetics and molecular biology to understand development and to improve future therapeutics.
Establishment of Functional Genomics Pipeline in Mouse Epiblast-Like Tissue by Combining Transcriptomic Analysis and Gene Knockdown/Knockin/Knockout, Using RNA Interference and CRISPR/Cas9.
Specimen part
View SamplesThe unfolded protein response (UPR) is a cellular defense mechanism against glucose deprivation, a cell condition that occurs in solid tumors.
Chemical genomics identifies the unfolded protein response as a target for selective cancer cell killing during glucose deprivation.
No sample metadata fields
View SamplesWe used microarrays to detail transcriptional changes in the rat heart in response to doxorubicin, a chemotherapeutic drug known to induce cardiac disfunction/heart failure
Early effects of doxorubicin in perfused heart: transcriptional profiling reveals inhibition of cellular stress response genes.
No sample metadata fields
View SamplesNitrogen (N) is a key nutrient that is often the limiting factor in plant growth. However, the molecular mechanisms underlying transcriptional regulation of N-starvation-responses remain largely unknown.
A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis.
Specimen part
View SamplesTo identify molecules to serve as diagnostic markers for high-grade prostate cancer (PC) and targets for novel therapeutic drugs, we investigated the gene expression profiles of high-grade PCs using a cDNA microarray combined with laser microbeam microdissection.
The ubiquitin-like molecule interferon-stimulated gene 15 is overexpressed in human prostate cancer.
Specimen part
View SamplesAngiopoietin-Tie2 sytem has been inplicated in both vascular quiescence and angiogenesis. It is unclear how these two opposing signals are regulated from the same receptor-mediated intracellular signal transduction. We have noticed that Tie2 localization upon Angiopoietin stimulation depends upon the presence or absence of cell-cell contacts.
Differential function of Tie2 at cell-cell contacts and cell-substratum contacts regulated by angiopoietin-1.
No sample metadata fields
View SamplesTo examine the role of hepatpcyte growth factor activator inhibitor type 1 (HAI-1) in cancer, we analyzed effect of HAI-1 silencing on gene expression profiles of human oral squamous cell carcinoma cell line, SAS. We used short hairpin RNA (shRNA) directed against HAI-1 mRNA. We constructed retroviral vectors which showed stable and significant silencing effects on HAI-1 genes of SAS.
Loss of membrane-bound serine protease inhibitor HAI-1 induces oral squamous cell carcinoma cells' invasiveness.
Specimen part, Cell line
View Samples