Embryonic retinal development Overall design: Mouse retinas at different embryonic developmental stages were isolated and mRNA expression was determined by RNA sequencing
Programmed mitophagy is essential for the glycolytic switch during cell differentiation.
Specimen part, Cell line, Subject
View SamplesDendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) and compared it to splenic DCs (CD11c+ DC), from mice.
Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine.
Specimen part
View SamplesDendritic cells play a vital role in initiating robust immunity against pathogens as well as maintaining immunological tolerance to self antigens, food antigens and intestinal commensals. However, the intracellular signaling networks that program DCs to become tolerogenic are largely unknown. To address this, we analyzed gene expression profiles using microarray analysis of purified intestinal lamina propria DCs (CD11c+ CD11b+ DCs and CD11c+ CD11b- DCs) from mice.
Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine.
Specimen part
View SamplesDendritic cells (DCs) play a vital role in innate immunity. Transcriptome of DCs isolated from mouse spleen was obtained and deposited here.
Activation of beta-catenin in dendritic cells regulates immunity versus tolerance in the intestine.
Specimen part
View SamplesEnhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, supporting pre-Osx1+ osteoprogenitors as a critical source and target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) is to date an unidentified transcription factor in the osteoblast gene regulatory network that is induced during bone development and bone repair, and acts upstream of Osx in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives critical regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.
Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2.
Age, Specimen part
View SamplesAminaphtone, a drug used in the treatment of chronic venous insufficiency (CVI), showed a remarkable role in the modulation of several vasoactive factors, like endothelin-1 and adhesion molecules. We analysed in vitro the effects of Aminaphtone on whole-genome gene expression. ECV304 endothelial cells were stimulated with IL-1 100 U/ml in the presence or absence of Aminaphtone 6 g/ml. Gene expression profiles were compared at 1, 3, and 6 h after stimulation by microarray.
Gene expression profiling reveals novel protective effects of Aminaphtone on ECV304 endothelial cells.
Cell line
View SamplesUnder conditions of hormonal adjuvant treatment the estrogen receptor apoprotein supports breast cancer cell cycling through the retinoic acid receptor 1 apoprotein.
During hormone depletion or tamoxifen treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor α1 apoprotein.
Cell line
View SamplesTreatment of late passage (LP50) LNCaP cells with R1881 (androgen) and AR shRNA identified a gene program controlled by androgen receptor in the absence of androgen.
Hormone depletion-insensitivity of prostate cancer cells is supported by the AR without binding to classical response elements.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View SamplesCrossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes (paternal excess) associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants.
Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana.
No sample metadata fields
View Samples