refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 1117 results
Sort by

Filters

Technology

Platform

accession-icon GSE46151
Six homeoproteins and a linc-RNA cooperate at the fast MYH locus to lock terminal fast myofibre phenotype
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Thousands of long intergenic noncoding RNAs (lincRNAs) are encoded by the mammalian genome, which were reported to have multiple biological functions as transcriptional activators acting in cis 1 or trans 2, transcriptional repressors 3,4 or miRNAs decoys 5,6. However, the function of most lincRNAs has not yet been identified in vivo. Here, we demonstrate a role for linc-MYH, a novel long intergenic noncoding RNA, in adult fast-type myofibre specialization. Skeletal myofibre fast and slow phenotypes are established through differential expression of numerous fibre-specific genes7. We show linc-MYH and the fast MYH genes share a common enhancer located in the fast MYH genes locus and regulated by the Six1 homeoproteins. Muscle-specific Six1 mutant mice show increased expression of slow-type genes, and downregulation of linc-MYH and fast-type genes. linc-MYH function revealed by in vivo knockdown and wide transcriptomic analysis, is in fine to prevent expression of genes ensuring slow muscle contractile properties, and to increase fast-type muscle gene expression in fast-type myofibres. Thus, formation of efficient fast sarcomeric units and appropriate Ca++ cycling and excitation/contraction/relaxation coupling in fast- myofibres is achieved through the coordiante control of fast MYHs and linc-MYH expression by a Six bound enhancer.

Publication Title

Six homeoproteins and a Iinc-RNA at the fast MYH locus lock fast myofiber terminal phenotype.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE109737
A novel systems immunology approach identifies the collective impact of five miRNAs in Th2 inflammation
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE109735
A novel systems immunology approach identifies the collective impact of five miRNAs in Th2 inflammation (mRNA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Allergic asthma is a chronic inflammatory disease dominated by a CD4+ T helper 2 (Th2) cell signature. The immune response amplifies in self-enforcing loops, promoting Th2-driven cellular immunity and leaving the host unable to terminate inflammation. Posttranscriptional mechanisms, including miRNAs, are pivotal in maintaining immune-homeostasis. Since an altered expression of various miRNAs has been associated with T cell-driven diseases, including asthma, we hypothesized that miRNAs control mechanisms ensuring Th2 stability and maintenance in the lung. We isolated murine CD4+ Th2 cells from allergic inflamed lungs and profiled gene and microRNA expression.

Publication Title

A systems immunology approach identifies the collective impact of 5 miRs in Th2 inflammation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE48997
Expression data in wt or mutant Drosophila melanogaster embryos
  • organism-icon Drosophila melanogaster
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Terminal differentiation of epidermal cells in Drosophila embryos requires the activity of a transcription factor. Svb is necessary and sufficient to induce this process. pri is a regulator of Svb activity, converting it from a repressor into an activator. To characterize the downstream Svb and pri effectors in cell morphogenesis, we performed microarrays in wt, svb -/- (no gene) and pri -/- (svb repressor) mutant conditions.

Publication Title

Genome-wide analyses of Shavenbaby target genes reveals distinct features of enhancer organization.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21652
Expression data for transcriptional engineering mutants capable of L-tyrosine overproduction
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We measured transcriptional changes in four strains P2, rpoD3, rpoA14, and rpoA27 - in an effort to understand mechanisms by which L-tyrosine production is positively influenced by the presence of mutant rpoA- and rpoD-encoded transcriptional components.

Publication Title

Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE113118
Expression data from Saccharomyces cerevisiae strains deleted for the nucleoporin Nup84
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

the nuclear pore complex (NPC) is emerging as an important mediator of cellular processes beyond molecule transport, including control of gene expression, replication and DNA repair.

Publication Title

The Nup84 complex coordinates the DNA damage response to warrant genome integrity.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45222
Reversible mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts
  • organism-icon Mus musculus
  • sample-icon 51 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of the transcriptional profiles of mRNA and microRNA in Rasless fibroblasts. 4-Hydroxy-tamoxifen (4-OHT) treatment triggers removal of K-Ras expression in [H-Ras-/-;N-Ras-/-;K-Raslox/lox;RERTert/ert ] mouse fibroblasts (named K-Raslox) generating Rasless MEFs which are unable to proliferate, but recover proliferative ability after ectopic expression of constitutively active downstream kinases such as BRAF and MEK1.

Publication Title

Reversible, interrelated mRNA and miRNA expression patterns in the transcriptome of Rasless fibroblasts: functional and mechanistic implications.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE56703
Microarray and ChIP-chip analyses of the THSC/TREX-2 complex
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE56702
Expression data from Saccharomyces cerevisiae strains deleted for the THSC/TREX-2 subunits Thp1, Sac3 and Sus1
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Transcription is a major obstacle for replication fork progression and a cause of genome instability. Such instability increases in mutants with a suboptimal assembly of the nascent messenger ribonucleo-protein particle (mRNP), as THO/TREX and the NPC-associated THSC/TREX-2 complex.

Publication Title

A genome-wide function of THSC/TREX-2 at active genes prevents transcription-replication collisions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68488
YRA1 overexpression microarray and ChIP-chip
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Excess of Yra1 RNA-Binding Factor Causes Transcription-Dependent Genome Instability, Replication Impairment and Telomere Shortening.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact