The organization of mammalian DNA replication is poorly understood. We have produced genome-wide high-resolution dynamic maps of the timing of replication in human erythroid, mesenchymal and embryonic stem cells using TimEX, a method that relies on gaussian convolution of massive, highly redundant determinations of DNA copy number variations during S phase obtained using either high-density oligonucleotide tiling arrays or massively-parallel sequencing to produce replication timing profiles. We show that in untransformed human cells, timing of replication is highly regulated and highly synchronous, and that many genomic segments are replicated in temporal transition regions devoid of initiation where replication forks progress unidirectionally from origins that can be hundreds of kilobases away. Absence of initiation in one transition region is shown at the molecular level by SMARD analysis. Comparison of ES and erythroid cells replication patterns revealed that these cells replicate about 20% of their genome in different quarter of S phase and that ES cells replicate a larger proportion of their genome in early S phase than erythroid cells. Importantly, we detected a strong inverse relationship between timing of replication and distance to the closest expressed gene. This relationship can be used to predict tissue specific timing of replication profiles from expression data and genomic annotations. We also provide evidence that early origins of replication are preferentially located near highly expressed genes, that mid firing origins are located near moderately expressed genes and that late firing origins are located far from genes.
Predictable dynamic program of timing of DNA replication in human cells.
Specimen part
View SamplesThe fermentable carbohydrate composition of wort and the manner in which it is utilised by yeast during brewery fermentation has a direct influence on fermentation efficiency and quality of the finished product. In this study the response of a brewing yeast strain to changes in wort fermentable carbohydrate concentration and composition during full-scale (3275 hL) brewery fermentation was investigated by measuring transcriptome changes with the aid of oligonucleotide based DNA arrays. Up to 90% of the detectable genes showed a significant (P 0.05) differential expression pattern during fermentation and the majority of these genes showed either transient or prolonged peaks in expression following the exhaustion of the monosaccharides glucose and fructose from the wort. Those which did not display this apparent carbon catabolite derepression response were mainly those genes involved in cytokinesis and cell budding, which had higher expression values during active growth of cells. Transcriptional activity of many genes was consistent with their known responses to glucose de/repression under laboratory conditions, despite the presence of di- and trisaccharide sugars in the wort.
AtEnsEMBL.
No sample metadata fields
View SamplesWNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT-signaling pathway. A dysregulated expression of WISP1 often reflects its oncogenic potential by inhibition of apoptosis, a necessary form of cell death that protect cell populations for transformation into malignant phenotypes. WISP1-signaling is also known to affect proliferation and differentiation of human mesenchymal stem cells (hMSCs), which are fundamental for the constitution and maintenance of the musculoskeletal system. Our study emphasizes the importance of WISP1-signaling for cell survival of primary human cells. Therefore, we established a successful down-regulation of endogenous WISP1 transcripts through gene silencing in hMSCs. We were able to demonstrate the consequence of cell death immediately after WISP1 down-regulation took place. Bioinformatical analyses of subsequent performed microarrays from WISP1 down-regulated vs. control samples confirmed this observation. We uncovered several clusters of differential expressed genes important for cellular apoptosis induction and immuno-regulatory processes, thereby indicating TRAIL-induced and p53-mediated apoptosis as well as IFNbeta-signaling. Since all of them act as potent inhibitors for malignant cell growth, in vitro knowledge about the connection with WISP1-signaling could help to find new therapeutic approaches concerning cancerogenesis and tumor growth in musculoskeletal tissues.
WISP 1 is an important survival factor in human mesenchymal stromal cells.
Specimen part, Treatment
View SamplesIn this study we investigated the effect of normal chow (0 % cholesterol) or a semisynthetic diet (high sugar, 0.02 % cholesterol) fed to mice lacking either Mc4r, Ldlr or both and wildtype animals (total of 4 genotypes) by generating an expression profile of their livers after 6 months by RNA sequencing. Overall design: We investigated mice lacking either Mc4r, Ldlr or both and wildtype animals fed with normal chow or a semisynthetic diet with 10 replicates for each of the 8 resulting groups (4 genotypes * 2 diets).
Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor.
Age, Specimen part, Cell line, Subject
View SamplesWT,WTR,MU and MUR replicates from Affymetrix GeneChip Mouse Expression Set 430 Arrays A and B
The octamer binding transcription factor Oct-1 is a stress sensor.
No sample metadata fields
View SamplesEpithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) facilitate breast cancer (BC) metastasis, however stable molecular changes that result as a consequence of these processes remain poorly defined. Therefore, we sought to identify molecular markers that could distinguish tumor cells that had completed the EMT:MET cycle in the hopes of identifying and targeting unique aspects of metastatic tumor outgrowth.Therefore, normal murine mammary gland (NMumG) cells transformed by overexpression of EGFR (NME) cells were cultured in the presence of TGF-beta1 (5 ng/ml) for 4 weeks, at which point TGF-beta1 supplementation was discontinued and the cells were allowed to recover for an additional 4 weeks (Post-TGF-Rec). Total RNA was prepared from unstimulated cells (Pre-TGF) of similar passage and compared by microarray analysis.
Fibroblast growth factor receptor splice variants are stable markers of oncogenic transforming growth factor β1 signaling in metastatic breast cancers.
Specimen part
View SamplesThe protease activity of the paracaspase MALT1 plays an important role in antigen receptor-mediated lymphocyte activation by controlling the activity of the transcription factor NF-kB and is thus essential for the expression of inflammatory target genes.
MALT1 Protease Activity Controls the Expression of Inflammatory Genes in Keratinocytes upon Zymosan Stimulation.
Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of primary osteoporosis and advanced donor age on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC of elderly patients suffering from osteoporosis were isolated from femoral heads after low-energy fracture of the femoral neck. Control cells were obtained from bone marrow of femoral heads of middle-aged, non-osteoporotic donors after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part, Disease
View SamplesIn the present study we analyzed the effect of cellular senescence on the transcriptome of human mesenchymal stem cells (hMSC; alternatively named mesenchymal stromal cells) from bone marrow. Human MSC were isolated from femoral heads of non-osteoporotic donors after total hip arthroplasty.
The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors.
Sex, Age, Specimen part
View Samples