Up to now the role of tumor-specific pTregs and anergic cells during tumor development is not fully understood. Here we used a genetically-induced tumor expressing a MHC-II restricted DBY model antigen to characterize the tumor-induced pTregs and anergic cells that arise early during tumor development.
Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.
Time
View SamplesUp to know CD4 T cell antitumor responses have been mostly studied in transplanted tumor models. However, although they are valuable tools, they are not suitable to study the long term interactions between tumors and the immune system
Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.
Time
View SamplesCD4+ T cells as mediators of antitumor responses are beginning to be appreciated. Our team demonstrated that chronically activated CD4+ T cells (chCD4+ T cells) were expanded in the blood of cancer patients and their expansion is correlated with tumor regression.
Induction of anergic or regulatory tumor-specific CD4<sup>+</sup> T cells in the tumor-draining lymph node.
Disease
View SamplesPosttranscriptional regulation of mRNA levels in neutrophils and its consequences for immune responses are unexplored. By employing profiling of the neutrophil transcriptome we show that the mRNA-destabilizing protein tristetraprolin (TTP) limits the expression of hundreds of genes, including genes negatively regulating apoptosis. Elicited TTP-deficient neutrophils exhibited reduced apoptosis and were increased in numbers. The anti-apoptotic protein Mcl-1 was elevated in TTP-deficient neutrophils and Mcl1 mRNA was bound and destabilized by TTP. Ablation of TTP in macrophages and neutrophils resulted in an improved defense and survival of mice during invasive infection with Streptococcus pyogenes. Mice lacking myeloid TTP prevented dissemination of bacteria and efficiently blunted systemic disease by massive but controlled neutrophil deployment. These data identify posttranscriptional control by TTP to restrict neutrophils and antimicrobial defense. Overall design: WT and TTPKO peritoneal neutrophils stimulated with LPS for 4 h. Each condition analyzed in three replicates
The RNA-binding protein tristetraprolin schedules apoptosis of pathogen-engaged neutrophils during bacterial infection.
Subject
View SamplesPrecise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: Experiment comparing RNA decay rates in WT and TTP-/- macrophages at LPS 3 h and 6 h. Transcription was blocked with actinomycin D for 0, 45 or 90 min. Decay rates was calculated using linear model.
Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.
Specimen part, Cell line, Subject, Time
View SamplesPrecise control of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. Parameters determining the specificity and extent of mRNA degradation within the entire inflammation-associated transcriptome remain incompletely understood. Using transcriptome-wide high resolution occupancy assessment of the mRNA-destabilizing protein TTP, a major inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions and functionally relate them to TTP-dependent mRNA decay in immunostimulated macrophages. We identify pervasive TTP binding with incompletely penetrant linkage to mRNA destabilization. A necessary but not sufficient feature of TTP-mediated mRNA destabilization is binding to 3’ untranslated regions (UTRs). Mapping of binding positions of the mRNA-stabilizing protein HuR in activated macrophages revealed that TTP and HuR binding sites in 3’ UTRs occur mostly in different transcripts implicating only a limited co-regulation of inflammatory mRNAs by these proteins. Remarkably, we identify robust and widespread TTP binding to introns of stable transcripts. Nuclear TTP is associated with spliced-out introns and maintained in the nucleus throughout the inflammatory response. Our study establishes a functional annotation of binding positions dictating TTP-dependent mRNA decay in immunostimulated macrophages. The findings allow navigating the transcriptome-wide landscape of RNA elements controlling inflammation. Overall design: RNA-Seq of RNA isolated from murine bone marrow derived macrophages (WT or TTP-deficient) stimulated for 6 h with LPS
Tristetraprolin binding site atlas in the macrophage transcriptome reveals a switch for inflammation resolution.
No sample metadata fields
View SamplesControlled decay of cytokine and chemokine mRNAs restrains the time and amplitude of inflammatory responses. Tristetraprolin (TTP) binds to AU-rich elements in 3 untranslated regions of mRNA and targets the bound mRNA for degradation. We have addressed here the function of TTP in balancing the macrophage activation state by a comprehensive analysis of TTP-dependent mRNA decay in LPS-stimulated macrophages from WT and TTP-deficient mice.
Tristetraprolin-driven regulatory circuit controls quality and timing of mRNA decay in inflammation.
Specimen part
View SamplesWe used transgenic mouse embryos that are deficient in the two enzymatically active RNA editing enzymes ADAR1 and ADAR2 to compare relative frequencies but also sequence composition of mature miRNAs in these genetically modified backgrounds to wild-type mice by Illumina next gen sequencing. Deficiency of ADAR2 leads to a reproducible change in abundance of specific miRNAs and their predicted targets. Changes in miRNA abundance seem unrelated to editing events. Additional deletion of ADAR1 has surprisingly little impact on the mature miRNA repertoire, indicating that miRNA expression is primarily dependent on ADAR2. A to G transitions reflecting A to I editing events can be detected at few sites and at low frequency during the early embryonic stage investigated. Again, most editing events are ADAR2 dependent with only few editing sites being specifically edited by ADAR1. Besides known editing events in miRNAs a few novel, previously unknown editing events were identified. Some editing events are located to the seed region of miRNAs opening the possibility that editing leads to their retargeting. Overall design: GSM852140-8: sequencing of mature miRNAs of wt, ADAR2-/- and ADAR1-/-/ADAR2-/- female mouse embryos at E11.5 GSM863778-81: Gene expression was measured in wiltype, ADAR2-/- and ADAR1-/-/ADAR2-/- E11.5 whole female mouse embryos using Agilent Whole Mouse Genome Oligo Microarrays 8x60K.
Adenosine deaminases that act on RNA induce reproducible changes in abundance and sequence of embryonic miRNAs.
Sex, Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.
Sex, Specimen part
View SamplesBackground: Adenosine deaminases that act on RNA (ADARs) bind to double-stranded and structured RNAs and deaminate adenosines to inosines. This A to I editing is widespread and required for normal life and development. Besides mRNAs and repetitive elements, ADARs can target miRNA precursors. Editing of miRNA precursors can affect processing efficiency and alter target specificity. Interestingly, ADARs can also influence miRNA abundance independent of RNA-editing. In mouse embryos where editing levels are low, ADAR2 was found to be the major ADAR protein that affects miRNA abundance. Here we extend our analysis to adult mouse brains where high editing levels are observed.
ADAR2 induces reproducible changes in sequence and abundance of mature microRNAs in the mouse brain.
Sex, Specimen part
View Samples