Foam cell formation from monocyte-derived macrophages is a hallmark of atheroscle-rotic lesions. Aspects of this process can be recapitulated in vitro by exposing MCSF-induced or platelet factor4 (CXCL4)-induced macrophages to oxidized (ox) or minimally modified (mm) low density lipoprotein (LDL). We measured gene expression in periph-eral blood mononuclear cells (PBMCs), monocytes and macrophages treated with CXCL1 (GRO-) or CCL2 (MCP-1) as well as foam cells induced by native LDL, mmLDL or oxLDL using 22 Affymetrix gene chips. Using an advanced Bayesian error-pooling approach and a heterogeneous error model (HEM) with a false discovery rate (FDR) <0.05, we found 5,303 of 22,215 probe sets to be significantly regulated in at least one of the conditions. Among a subset of 917 candidate genes that were preselected for their known biological functions in macrophage foamcell differentiation, we found that 290 genes met the above statistical criteria for significant differential expression patterns. While many expected genes were found to be upregulated by LDL and oxLDL, very few were induced by mmLDL. We also found induction of unexpected genes, most strikingly MHC-II and other dendritic cell markers such as CD11c. The gene expression patterns in response to oxLDL were similar in MCSF-induced and CXCL4-induced macrophages. Our findings suggest that LDL and oxLDL, but not mmLDL, induce a dendritic cell-like phenotype in macrophages, suggesting that these cells may be able to present antigens and support an immune response.
Induction of dendritic cell-like phenotype in macrophages during foam cell formation.
No sample metadata fields
View SamplesThis work uses a time series in order to decipher gene relationships and consequently to build core regulatory networks involved in Arabidopsis root adaptation to NO3- provision. The experimental approach has been to monitor genome response to NO3- at 3, 6, 9, 12, 15 and 20 min, using ATH1 chips. This high-resolution time course analysis demonstrated that the previously known primary nitrate response is actually preceded by very fast (within 3 min) gene expression modulation, involving genes/functions needed to prepare plants to use/reduce NO3-. State-space modeling (a machine learning approach) has been used to successfully predict gene behavior in unlearnt conditions.
Predictive network modeling of the high-resolution dynamic plant transcriptome in response to nitrate.
Specimen part, Treatment
View SamplesWe investigated the morphological roots decisions of Arabidopsis in a NO3- heterogeneous medium. To do so, we used the Split-Root System which is an experimental set up to assess root decisions in nutrient heterogeneous medium. Split-root plants have been subjected to three different treatments. Control KNO3 plants received KNO3 on both sides of the root system (C.NO3) and Control KCl plants received KCl on both sides (C.KCl) as a nitrogen deprivation treatment. 'Split' plants received KNO3 on one side (Sp.NO3) and KCl on the other side (Sp.KCl) of the root system to assess the root decision-making in a heterogeneous environment.
Nitrogen economics of root foraging: transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs. demand.
Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type germinating conidia (WT_GC) or PrtT protease deficient mutant conidia (PrtT-GC) or inert acrylic 2-4 micron beads (Beads) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus wild type culture filtrate (WT-CF) or PrtT protease deficient mutant culture filtrate (PrtT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesResponse of A549 cells treated with Aspergillus fumigatus germinating conidia (WT-GC) or culture filtrate (WT-CF) for 8h
PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.
Specimen part, Cell line, Treatment
View SamplesMicroarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.
Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.
Specimen part
View SamplesThis microarray experiment serves to identify the genes in the Arabidopsis genome that are regulated by carbon and light signaling interactions in 7 day dark grown seedlings. The expression profile of wild-type will be compared to the cli186 mutant, a mutant defective in carbon and light signaling. Plants of both the wild-type and cli186 genotypes are treated with the following light (L) and carbon (C) treatments: -C-L, +C-L, +C+L, -C+L. Comparison of the expression profiles under all treatments will help to identify genes that are misregulated in carbon and/or light treatments in the cli186 mutant.
An integrated genetic, genomic and systems approach defines gene networks regulated by the interaction of light and carbon signaling pathways in Arabidopsis.
Age
View SamplesInfection of RAW264.7 cells with RHku80 parasites or mock-infection for 24 hours
Infection by Toxoplasma gondii specifically induces host c-Myc and the genes this pivotal transcription factor regulates.
Cell line
View Samples