refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Showing
of 1300 results
Sort by

Filters

Technology

Platform

accession-icon GSE28044
Expression data from non-malignant fallopian tube epithelium
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarrays were used to examine gene expression changes that may be present in the fallopian tube epithelium of morphologically normal BRCA1 mutation positive and negative subjects. Fallopian tube epithelia has been implicated as an early point of origin for serous carcninoma. By examining the early events present in the microenvironment of this tissue between BRCA1 mutation carriers and non-carriers, we hoped to elucidate mechanisms that may lead to the development of epithelial ovarian cancer.

Publication Title

Identification of abrogated pathways in fallopian tube epithelium from BRCA1 mutation carriers.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10971
Gene expression data from non-malignant fallopian tube epithelium and high grade serous carcinoma.
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The purpose of this study was to identify molecular alterations potentially involved in predisposition to adnexal serous carcinoma (SerCa) in the non-malignant fallopian tube epithelium (FTE) of BRCA1/2-mutation carriers, given recent evidence implicating the distal FTE as a common source for SerCa.

Publication Title

Gene expression profiles of luteal phase fallopian tube epithelium from BRCA mutation carriers resemble high-grade serous carcinoma.

Sample Metadata Fields

Age

View Samples
accession-icon GSE24986
Response of A549 cells treated with Aspergillus fumigatus
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE24984
Response of A549 cells treated with Aspergillus fumigatus [WT-GC_vs_PrtT-GC]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Response of A549 cells treated with Aspergillus fumigatus wild type germinating conidia (WT_GC) or PrtT protease deficient mutant conidia (PrtT-GC) or inert acrylic 2-4 micron beads (Beads) for 8h

Publication Title

PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE24985
Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_PrtT-CF]
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Response of A549 cells treated with Aspergillus fumigatus wild type culture filtrate (WT-CF) or PrtT protease deficient mutant culture filtrate (PrtT-CF) for 8h

Publication Title

PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE24983
Response of A549 cells treated with Aspergillus fumigatus [WT-CF_vs_WT-GC]
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Response of A549 cells treated with Aspergillus fumigatus germinating conidia (WT-GC) or culture filtrate (WT-CF) for 8h

Publication Title

PrtT-regulated proteins secreted by Aspergillus fumigatus activate MAPK signaling in exposed A549 lung cells leading to necrotic cell death.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE1994
Neuron susceptibility to seizure-induced injury. Dingledine-5R01NS031373-10-2
  • organism-icon Rattus norvegicus
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Neurodegenerative brain disorders become more common in the aged. Most of these disorders are associated with or caused by selective death of certain neuronal subpopulations. The mechanisms underlying the differential vulnerability of certain neuronal populations are still largely unexplored and few neuroprotective treatments are available to date. Elucidation of these mechanisms may lead to a greater understanding of the pathogenesis and treatment of neurodegenerative diseases. Moreover, preconditioning by a short seizure confers neuroprotection following a subsequent prolonged seizure. Our goal is to identify pathways that confer vulnerability and resistance to neurotoxic conditions by comparing the basal and preconditioned gene expression profiles of three differentially vulnerable hippocampal neuron populations.

Publication Title

Gene expression changes after seizure preconditioning in the three major hippocampal cell layers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE20589
Microarray analysis identifies the gene signature of surviving motor neurons in human SOD1-related motor neuron disease
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiling has been performed previously on motor cortex and spinal cord homogenates and of sporadic ALS cases and controls, to identify genes and pathways differentially expressed in ALS. More recent studies have combined the use of laser capture microdissection (LCM) with gene expression profiling to isolate the motor neurons from the surrounding cells, such as microglia and astrocytes, in order to determine those genes differentially expressed in the vulnerable cell population i.e. motor neuron.

Publication Title

Phosphatase and tensin homologue/protein kinase B pathway linked to motor neuron survival in human superoxide dismutase 1-related amyotrophic lateral sclerosis.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE72359
p53 amplifies Toll-like receptor 5 response in MCF-7 cells
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Using gene expression profiling we characterize the global effect of p53 on the TLR5-mediated transcription in MCF7 cells. We found that combined activation of p53 and TLR5 pathways synergistically increases expression of over 200 genes, mostly associated with immunity and inflammation. The synergy was observed in several human cancer cells and primary lymphocytes.

Publication Title

p53 amplifies Toll-like receptor 5 response in human primary and cancer cells through interaction with multiple signal transduction pathways.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE2880
dingl-affy-rat-50847
  • organism-icon Rattus norvegicus
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Epilepsy is a major neurological disorder that affects approximately 1% of the population. The processes that lead to the development of epilepsy (epileptogenesis) are largely unknown. Levetiracetam is a novel antiepileptic drug (AED) that in the kindling model inhibits epileptogenesis in addition to being effective in controlling established epilepsy. The mechanisms of action of levetiracetam as an AED and an antiepileptogenic drug are unknown. By identifying the effect of chronic levetiracetam therapy on gene expression in the brain we hope to be able to identify genes that are involved in epileptogenesis. By comparing the gene expression profiles of levetiracetam and phenytoin treatments, we hope to be able to distinguish between genes that are important for the antiepileptic (anti-seizure) effect and genes that are important for the antiepileptogenic effect of levetiracetam. Phenytoin is a well-established AED; its mechanism of action involves inhibition of sodium channels. In contrast to levetiracetam, available data suggest that phenytoin in certain situations may enhance rather than inhibit the development of epilepsy.

Publication Title

Region-specific changes in gene expression in rat brain after chronic treatment with levetiracetam or phenytoin.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact