The Loeys-Dietz syndrome (LDS) is an inherited connective tissue disorder caused by mutations in the transforming growth factor (TGF-) receptors TGFBR1 or TGFBR2. Most patients with LDS develop severe aortic aneurysms resulting in early need of surgical intervention. We investigated circulating outgrowth endothelial cells (OEC) from the peripheral blood of LDS to gain further insight into the pathophysiology of the disorder. We performed gene expression profiling using microarray analysis followed by quantitative PCR for verification of gene expression. OECs isolated from age- and sex-matched healthy donors served as reference control.
Overexpression of Gremlin-1 in patients with Loeys-Dietz syndrome: implications on pathophysiology and early disease detection.
Sex, Age, Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.
Specimen part
View SamplesTo determine cardiac transcription profile in cyanotic Tetralogy of Fallot patients subjected to conrolled reoxygenation cardiopulmonary bypass, we collected myocardial samples at the end of the ischemic time. The transcriptional profile of the mRNA in these samples was measured with gene array technology
Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.
Specimen part
View SamplesTo determine cardiac transcription profile in cyanotic Tetralogy of Fallot patients subjected to hyperoxic/standard cardiopulmonary bypass, we collected myocardial samples at the end of the ischemic time. The transcriptional profile of the mRNA in these samples was measured with gene array technology
Controlled reoxygenation cardiopulmonary bypass is associated with reduced transcriptomic changes in cyanotic tetralogy of Fallot patients undergoing surgery.
Specimen part
View SamplesTo determine the changes in intra-renal gene expression in a novel large animal model of post Cardiopulmonary Bypass (CPB) acute kidney injury, we collected renal medulla samples obtained 24hours post intervention.
Changes in renal medulla gene expression in a pre-clinical model of post cardiopulmonary bypass acute kidney injury.
Specimen part, Treatment
View SamplesMorphogenesis of the mammary gland relies on the precise developmental control of morphological elements including TEBs, ducts and lobules. In the peripubertal mammary gland, rising levels of ovarian hormones control this development through a tightly controlled genetic program where specific sets of genes are up-regulated.
In utero and lactational exposure to vinclozolin and genistein induces genomic changes in the rat mammary gland.
Specimen part, Treatment
View SamplesWe profiled genome-wide accesssible chromatin data and RNA-seq from four species (zebrafish, stickleback, mouse, and human) to identify commonly regulated genes and regulatory metods in intestinal epithelial cells (IECs). We identify a group genes that are commonly expressed in IECs and genes that are commonly expressed along the length of the intestine in fish and mammals. Using accessible chromatin data we identified enriched transcription factor binding site motifs In IECs and sites that are commonly accessible in IECs in all species. Finally, we confirm the ability for these regions from multiple species to drive conserved expression in IECs using a zebrafish reporter assay. Overall design: Examination of expression levels and chromatin accessibility in intestinal epithelaial cells in zebrafish
Genomic dissection of conserved transcriptional regulation in intestinal epithelial cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets.
Disease, Cell line
View SamplesAnalysis of gene expression levels in two DDLS tumor-derived cell lines DDLS8817 and LPS141 growing in culture in basal conditions
Drug synergy screen and network modeling in dedifferentiated liposarcoma identifies CDK4 and IGF1R as synergistic drug targets.
Cell line
View SamplesA central challenge in pharmaceutical research is to investigate genetic variation in response to drugs. The Collaborative Cross (CC) mouse reference population is a promising model for pharmacogenomic studies because of its large amount of genetic variation, genetic reproducibility, and dense recombination sites. While the CC lines are phenotypically diverse, their genetic diversity in drug disposition processes, such as detoxification reactions, is still largely uncharacterized. Here we systematically measured RNA-sequencing expression profiles from livers of 29 CC lines under baseline conditions. We then leveraged a reference collection of metabolic biotransformation pathways to map potential relations between drugs and their underlying expression quantitative trait loci (eQTLs). By applying this approach on proximal eQTLs, including eQTLs acting on the overall expression of genes and on the expression of particular transcript isoforms, we were able to construct the organization of hepatic eQTL-drug connectivity across the CC population. The analysis revealed a substantial impact of genetic variation acting on drug biotransformation, allowed mapping of potential joint genetic effects in the context of individual drugs, and demonstrated crosstalk between drug metabolism and lipid metabolism. Our findings provide a resource for investigating drug disposition in the CC strains, and offer a new paradigm for integrating biotransformation reactions to corresponding variations in DNA sequences. Overall design: This dataset includes RNA-Seq data of mRNA that were extracted from the liver of 55 male mice. The 55 mice belong to 29 different collaborative cross strains. The number of individual mice per strains is 3 for 3 strains, 2 for 16 strains, and 1 for 8 strains. All the mice are naïve without any special treatment.
Dissecting the Effect of Genetic Variation on the Hepatic Expression of Drug Disposition Genes across the Collaborative Cross Mouse Strains.
Specimen part, Cell line, Subject
View Samples