The Snf1 kinase plays a critical role in recalibrating cellular metabolism in response to glucose depletion. Hundreds of genes show changes in expression levels when the SNF1 gene is deleted. However, cells can adapt to the absence of a specific gene when grown in long term culture. Here we apply a chemical genetic method to rapidly and selectively inactivate a modified Snf1 kinase using a pyrazolopyrimidine inhibitor. By allowing cells to adjust to a change in carbon source prior to inhibition of the Snf1 kinase activity, we identified a set of genes whose expression increased when Snf1 was inhibited. Prominent in this set are genes that are activated by Gcn4, a transcriptional activator of amino acid biosynthetic genes. Deletion of Snf1 increased Gcn4 protein levels without affecting its mRNA levels. The increased Gcn4 protein levels required the Gcn2 kinase and Gcn20, regulators of GCN4 translation. These data indicate that Snf1 functions upstream of Gcn20 to regulate control of GCN4 translation.
A chemical genomics study identifies Snf1 as a repressor of GCN4 translation.
No sample metadata fields
View SamplesGene expression was examined in granulosa cells and oocytes in various stage of follicle and in vitro grown oocytes and granulosa cells complexes in sus scrofa.
Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesIn undifferentiated human ES cells, 5hr Met deprivation (delta Met) led to decreased proliferation, and prolonged 24hr Met deprivation resulted in G0-G1 phase cell cycle arrest, which then led to apoptosis.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesIn undifferentiated human ES cells, 48hr Leucine deprivation (delta Leu) or Lysine deprivation (delta Lys) led to apoptosis.
Methionine metabolism regulates maintenance and differentiation of human pluripotent stem cells.
Specimen part, Cell line
View SamplesGene expression analysis to compare control cells and sorted cells
Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis.
Specimen part
View SamplesWe investigated whether in vitro expansion of human alveolar epithelial type II cells is possible. We found that human endogenous human alveolar epithelial type II cells can be cultured and passaged. The culture system enabled retroviral gene transduction into human alveolar epithelial type II cells. We performed RNA sequencing of human alveolar epithelial type II cells transduced with mutant surfactant protein C or control vector. Overall design: Cultured human alveolar epithelial type II cells were transfected with retroviral vector containing mutant surfactant protein C or control retroviral vector. The retroviral vector contained LNGFR as a marker. After gene transduction, transduced cells were purified by magnetic-activated cell sorting. The transcriptome of the cells was generated by 5'Tag-seq using Ion Genestudio S5 Sequencer.
In vitro expansion of endogenous human alveolar epithelial type II cells in fibroblast-free spheroid culture.
Specimen part, Subject
View SamplesIn the alveoli, lung fibroblasts are in close contact with alveolar epithelial cells type 2, and are considered to support alveolar epithelial cells, forming an alveolar stem cell niche. However, what fibroblast-to-epithelial cell interactions occur during the alveolar maturation stage remains unclear. To understand the lung fibroblast-to-epithelial cell interactions, we performed time-course 3´SAGE-seq analysis of lung epithelial cells and fibroblasts. Overall design: Lung epithelial cells and lung fibroblasts from various developmental stages (E18.5, P0.5, P2, P7, P28, and P56) were purified by cell sorting. The time series transcriptome of the epithelial cells and fibroblasts was generated by 3'SAGE-seq using Ion Proton sequencer.
Mesenchymal-Epithelial Interactome Analysis Reveals Essential Factors Required for Fibroblast-Free Alveolosphere Formation.
Specimen part, Cell line, Subject
View SamplesThe molecular mechanism regulating phasic corticotropin-releasing hormone (CRH) release from parvocellular neurons (PVN) remains poorly understood. Here, we find a cohort of parvocellular cells interspersed with magnocellular PVN neurons expressing secretagogin. Single-cell transcriptome analysis combined with protein interactome profiling identifies secretagogin neurons as a distinct CRH-releasing neuron population reliant on secretagogin’s Ca2+ sensor properties and protein interactions with the vesicular traffic and exocytosis release machineries to liberate this key hypothalamic releasing hormone. Overall design: single cells from the PVN region juvenile (21-28 days) mice were dissected and subject to whole transcriptome analysis
A secretagogin locus of the mammalian hypothalamus controls stress hormone release.
No sample metadata fields
View SamplesPaper abstract: The transcription factors Abrupt (Ab) and Knot (Kn) act as selectors of distinct dendritic arbor morphologies in two classes of Drosophila sensory neurons, termed class I and class IV, respectively. We performed binding-site mapping and transcriptional profiling of isolated these neurons. Their profiles were similarly enriched in cell-type-specific enhancers of genes implicated in neural development. We identified a total of 429 target genes, of which 56 were common to Ab and Kn; these targets included genes necessary to shape dendritic arbors in either or both of the two sensory subtypes. Furthermore, a common target gene, encoding the cell adhesion molecule Ten-m, was expressed more strongly in class I than IV, and this differential was critical to the class-selective directional control of dendritic branch sprouting or extension. Our analyses illustrate how differentiating neurons employ distinct and shared repertoires of gene expression to produce class-selective morphological traits.
Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier.
Specimen part
View Samples