Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro. The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.
Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.
Specimen part
View SamplesTo characterize the potential molecular pathway(s) affected by iron treatment and identify the one(s) responsible for C3 induction, we performed a whole genome microarray on untreated ARPE-19 cells and cells treated with 250 M FAC for 48h/2d.
Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium.
Cell line, Treatment
View SamplesHere we examine the regulation of cell death by hepatic leukemia factor (HLF), which is an output regulator of circadian rhythms and is aberrantly expressed in human cancers, using an ectopic expression strategy in JB6 mouse epidermal cells and human keratinocytes. Ectopic HLF expression inhibited cell death in both JB6 cells and human keratinocytes, as induced by serum-starvation, tumor necrosis factor alpha and ionizing radiation.
Hepatic leukemia factor promotes resistance to cell death: implications for therapeutics and chronotherapy.
Cell line
View SamplesStudies have reported opposing effects of high-fat diet and mechanical stimulation on lineage commitment of the bone marrow stem cells. Yet, how the bone marrow modulates its gene expression in response to the combined effects of mechanical loading and a high-fat diet has not yet been addressed. We investigated whether early-life voluntary physical activity can modulate the effects of a high-fat diet on body composition, bone phenotype and bone marrow gene expression in male Sprague Dawley rats. We show that early-life high-fat diet positively affected body weight, total fat percentage and bone mass indices. In the bone marrow, early-life high-fat diet resulted in adipocyte hypertrophy and a pro-inflammatory and pro-adipogenic gene expression profile. Crucially, the bone marrow of the rats that undertook wheel exercise while on a high-fat diet retained a memory of the early-life exercise. This memory lasted at least 60 days after the cessation of the voluntary exercise and was manifest by: 1) the bone marrow adipocyte size of the exercised rats not exhibiting hypertrophy; and 2) genes associated with mature adipocyte function being down-regulated. Our results are consistent with the marrow adipose tissue having a unique and long-lasting response to high-fat feeding in the presence or absence of exercise. Overall design: Eighty male SD rats were randomised at weaning into : chow-fed group (C-SED) or a high-fat fed group. The high-fat fed group was further divided into three sub-groups: the high-fat sedentary (HF-SED) group, the high-fat late-exercise (HF-LEX) group, and the high-fat early-exercise (HF-EEX) group. At day 120-123, the animals were culled and total RNA was extracted from the bone marrow of the femur. The RNA was sequenced using Illumina Hiseq4000 technology. Differential gene expression analysis was carried out using Tuxedo suite of bioinformatic tools.
A Memory of Early Life Physical Activity Is Retained in Bone Marrow of Male Rats Fed a High-Fat Diet.
No sample metadata fields
View SamplesMicroarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated retinal pigment epithelium (RPE). With the advent of microarrays representing most of the transcriptome and techniques to obtain RNA from the isolated RPE monolayer, we have probed the response of the RPE and neurosensory retina (NSR) to light damage.
Microarray analysis of murine retinal light damage reveals changes in iron regulatory, complement, and antioxidant genes in the neurosensory retina and isolated RPE.
Sex, Specimen part, Treatment
View SamplesTotal RNA extracted from prostate cancer LNCaP cells transfected with siRNA against CTCF(siCTCF), or negative control siRNA (si-)were processed, and sequenced by two different companies using Illumina Hi-seq 2000 platform to generate RNA sequencing with two output sequences: paired-end 50bp and 101bp in read length. Nearly 100 million and 50 million raw reads were yielded from each sample respectively. We used FastQC to confirm the quality of raw fastq sequencing data, and SOAPfuse software to detect fusion transcripts. Overall design: Discovering fusion genes from siCTCF and si- in LNCaP cells.
Discovery of CTCF-sensitive Cis-spliced fusion RNAs between adjacent genes in human prostate cells.
No sample metadata fields
View SamplesPulmonary fibrosis (PF) is associated with many chronic lung diseases including Systemic sclerosis (SSc), Idiopathic Pulmonary Fibrosis (IPF) and Cystic Fibrosis (CF) which are characterized by the progressive accumulation of stromal cells and formation of scar tissue. Pulmonary fibrosis is a dysregulated response to alveolar injury which causes a progressive decline in lung function and refractory to current pharmacological therapies. Airway and alveolar epithelial cells and stromal cells contribute to pulmonary fibrosis but the cell-specific pathways and gene networks that are responsible for the pathophysiology are unknown. Recent animals models generated in our lab demonstrate clinical phenotypes seen in human fibrotic disease. The mouse model of transforming growth factor-a (TGFa)-induced fibrosis include conditionally expressing TGFa in the lung epithelium under control of the CCSP promoter driving rtTA expression (CCSP/TGFa). This allow the TGFa is only expressed in airway and alveolar epithelial cells and only when mice fed doxycycline (Dox). Similar to PF in humans, TGFa mice on Dox developed a progressive and extensive adventitial, interstitial and pleural fibrosis with a decline in lung mechanics. Thus, the TGFa transgenic mouse is a powerful model to determine lung cell-specific molecular signatures involved in pulmonary fibrosis. In this study, we sought to determine changes in the transcriptome during TGFa-induced pulmonary fibrosis. Our results showed that several pro-fibrotic genes increased in the lungs of TGFa mice. This study demonstrates that WT1 network gene changes associated with fibrosis and myfibroblast accumulation and thus may serve as a critical regulator fibrotic lung disease. Overall design: mRNA profiles of CCSP/- and CCSP/TGFalpha mice treated with Dox
Fibrocytes Regulate Wilms Tumor 1-Positive Cell Accumulation in Severe Fibrotic Lung Disease.
No sample metadata fields
View SamplesWhole genome expression profiling in the presence and absence of annexin A2 [shRNA] identified fundamentally altered transcriptional programming that changes the radioresponsive transcriptome.
Annexin A2 modulates radiation-sensitive transcriptional programming and cell fate.
Treatment, Time
View SamplesIn previous studies, it was observed that survivors who received stem cell transplantation and whole body irradiation showed development of NAFLD as a chronic effect.
Decreased Hepatic Lactotransferrin Induces Hepatic Steatosis in Chronic Non-Alcoholic Fatty Liver Disease Model.
Sex, Age, Specimen part
View SamplesHere, we focused on the intermediate stages of SCR by comparing the somatic cell line induced by OCT4, SOX2, and KLF4 (OSK) for 7 days with mouse embryonic fibroblasts (MEFs), iPSCs, and embryonic stem cells (ESCs). Transcriptional profiles of these four cell lines were analyzed by microarray, and we found that the transition process from day 7 to the formation of iPSCs is crucial for SCR and that the reverse expression patterns can provide more candidate markers to distinguish ESCs and somatic cells iPSC. Data confirmed that the viral infection results in defense innate immunity, DNA damage, and apoptosis in MEFs, which slows down cell proliferation and immortalization to inhibit SCR. Although SCR is initiated by OSK, the p53 signaling pathway can affect the transcriptional regulatory networks through cell cycle and genomic instability as a powerful core node.
Global transcriptional analysis of nuclear reprogramming in the transition from MEFs to iPSCs.
Sex, Specimen part
View Samples