We used high density oligonucleotide arrays to identify molecular correlates of genetically and clinically distinct subgroups of B-cell chronic lymphocytic leukemia (B-CLL). Gene expression profiling was used to profile the five most frequent genomic aberrations, namely deletions affecting chromosome bands 13q14, 11q22-q23, 17p13 and 6q21, and gains of genomic material affecting chromosome band 12q13. A strikingly high degree of correlation between loss or gain of genomic material and the amount of transcripts from the affected regions leads to the hypothesis of gene dosage as a significant pathogenic factor. Furthermore, the influence of the immunoglobulin variable heavy chain (VH) mutation status was determined. A clear distinction in the expression profiles of unmutated and mutated VH samples exists, which can be discovered using unsupervised learning methods. However, when samples were separated by gender, this separation could only be detected in samples from male patients.
Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status.
No sample metadata fields
View SamplesThe only target locus of transcription factor BglJ known to date is the bgl operon, and activation of bgl by BglJ requires RcsB. Transcription factor LeuO is involved in stress responses and known as antagonist of H-NS. To identifiy novel targets of BglJ, we overexpressed BglJ in Escherichia coli K12 and measured differential gene expression by performing DNA microarray analysis. Moreover, to analyze whether all targets of BglJ require RcsB, we overexpressed BglJ in an rcsB deletion background. In addition, we overexpressed LeuO to identifiy targets of LeuO.
RcsB-BglJ activates the Escherichia coli leuO gene, encoding an H-NS antagonist and pleiotropic regulator of virulence determinants.
No sample metadata fields
View SamplesPositioned nucleosomes limit the access of proteins to DNA and implement regulatory features encoded in eukaryotic genomes. Here we generated the first genome-wide nucleosome positioning map for Schizosaccharomyces pombe and annotated transcription start and termination sites genome-wide. Using this resource we found surprising differences compared to the nucleosome organization in the distantly related yeast Saccharomyces cerevisiae [the cerevisiae data has been published by others (PMID: 17873876) and the raw data is deposited at ArrayExpress(E-MEXP-1172)]. DNA sequence guides nucleosome positioning differently, e.g., poly(dA:dT) elements are not enriched in S. pombe nucleosome-depleted regions (NDRs). Regular nucleosomal arrays emanate more asymmetrically, i.e., mainly co-directionally with transcription, from promoter NDRs, but promoters harbouring the histone variant H2A.Z show regular arrays also upstream. Regular nucleosome phasing in S. pombe has a very short repeat length of 154 base pairs, and requires a remodeler, Mit1, conserved in humans but not found in S. cerevisiae. Nucleosome positioning mechanisms are evidently not universal but evolutionarily plastic.
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae.
No sample metadata fields
View SamplesmRNA expression profiling of pancreatic cancer, comparing adjacent normal tissue, patient tumour and first generation patient derived xenograft tumours
Establishment and Characterisation by Expression Microarray of Patient-Derived Xenograft Panel of Human Pancreatic Adenocarcinoma Patients.
Specimen part
View SamplesTo identify molecular pathophysiologic changes and novel disease mechanisms specific to myelomeningocele by analyzing AFS cfRNA in fetuses with open myelomeningocele.
Amniotic fluid transcriptomics reflects novel disease mechanisms in fetuses with myelomeningocele.
No sample metadata fields
View SamplesPro-regenerative macrophages are well known for their role in promoting tissue repair, however in nerve injury their role in promoting regenerative events is not well defined. Macrophage-targeted RNAseq revealed that macrophages expressed an array of ligands post nerve injury that interact with the injury environement to regulate regeneration. Overall design: RNAseq experiment was performed on FACS-collected cells obtained from the nerves of adult female mice (n=7-8 per time point at Day 3 and 8 post-nerve injury) from a double macrophage reporter (Cx3cr1-GFP/Ccr2-RFP) mouse line (stock no.: 017586; stock No.: 005582, Jackson Laboratories). Samples were pooled to obtain 2 RNAseq sample replicates per time point. Monocytes were also included as a reference.
Macrophages Regulate Schwann Cell Maturation after Nerve Injury.
Sex, Age, Specimen part, Cell line, Subject
View SamplesAnalysis of glucose and Lipid metabolism in male and female offspring after protein restriction of the mother
Sex-dependent programming of glucose and fatty acid metabolism in mouse offspring by maternal protein restriction.
Sex, Specimen part
View SamplesThe striatal protein Regulator of G protein signaling-2 (RGS9-2) plays a key modulatory role in opioid, monoamine and other GPCR responses. Here, we use the murine spared-nerve injury model of neuropathic pain to investigate the mechanism by which RGS9-2 in the nucleus accumbens (NAc), a brain region involved in mood reward and motivation, modulates the actions of tricyclic antidepressants (TCAs). Prevention of RGS9-2 action in the NAc increases the efficacy of the TCA desipramine and dramatically accelerates its onset of action. By controlling the activation of effector molecules by G protein a and bg subunits, RGS9-2 affects several protein interactions, phosphoprotein levels, and the function of the epigenetic modifier histone deacetylase 5 (HDAC5), that are important for TCA responsiveness. Furthermore, information from RNA-seq analysis reveals that RGS9-2 in the NAc affects the expression of many genes known to be involved in nociception, analgesia and antidepressant drug actions. Our findings provide novel information on NAc-specific cellular mechanisms that mediate the actions of TCAs in neuropathic pain states. Overall design: The RNAseq study was designed in order to reveal the impact of RGS9-2 on gene regulation in the Nucleus Accumbens under neuropathic pain and antidepressant treatment conditions. A total of 18 samples was used, coprising 6 different groups , and each group consisted of three different biological replicates.
RGS9-2--controlled adaptations in the striatum determine the onset of action and efficacy of antidepressants in neuropathic pain states.
No sample metadata fields
View SamplesCommercially available cell lines derived from Head and Neck Squamous cell carcinoma (HNSCC) were cultured and baseline gene expression values were assayed.
Investigation of radiosensitivity gene signatures in cancer cell lines.
No sample metadata fields
View SamplesGroucho related gene 5 (GRG5) is a multifunctional protein that has been implicated in late embryonic and postnatal mouse development. Here, we describe a previously unknown role of GRG5 in early developmental stages by analyzing its function in stem cell fate decisions. By both loss and gain of function approaches we demonstrate that ablation of GRG5 deregulates the Embryonic Stem Cell (ESC) pluripotent state whereas its overexpression leads to enhanced self-renewal and acquisition of cancer cell-like properties. A pro-oncogenic potential for GRG5 is revealed by the malignant behavior of teratomas generated from ESCs that overexpress it. Furthermore, transcriptomic analysis and cell differentiation approaches underline GRG5 as a multifaceted signaling regulator that represses mesendodermal-related genes. When ES cells exit pluripotency, GRG5 promotes neuroectodermal specification via Wnt and BMP signaling pathways suppression. Moreover, GRG5 promotes the neuronal reprogramming of fibroblasts and maintains the self-renewal of Neural Stem Cell (NSC) by sustaining the activity of Notch and Jak/Stat3 pathways. In summary, our results demonstrate that GRG5 has pleiotropic roles in stem cell biology functioning as a stemness factor and a neural fate specifier. Overall design: Gene expression profiling of control and Grg5 knockdown (KD) embryonic stem cells with RNA-seq, in dublicate, using Ion Torrent Proton.
Groucho related gene 5 (GRG5) is involved in embryonic and neural stem cell state decisions.
Cell line, Subject
View Samples