refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 100 results
Sort by

Filters

Technology

Platform

accession-icon GSE29798
A combined RNAi and localization approach for dissecting long noncoding RNAs reveals a function of Panct1 in ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Long non-coding RNAs (lncRNAs) regulate diverse biological pathways. Unlike protein coding genes, where methods to comprehensibly study their functional roles in cellular systems are available, techniques to systematically investigate lncRNAs have largely remained unexplored. Here, we report a technology for combined Knockdown and Localization Analysis of Non-coding RNAs (c-KLAN) that merges phenotypic characterization and localization approaches to study lncRNAs. Using a library of endoribonuclease prepared short interfering RNAs (esiRNAs) coupled with a pipeline for synthesizing labeled riboprobes for RNA fluorescence in situ hybridization (FISH), we demonstrate the utility of c-KLAN by identifying a novel transcript Panct1 (Pluripotency associated non-coding transcript 1) that regulates embryonic stem cell identity. We postulate that c-KLAN should be generally useful in the discovery of lncRNAs implicated in various biological processes.

Publication Title

Combined RNAi and localization for functionally dissecting long noncoding RNAs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63875
mmu-miR-709 gene targets
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We analyzed miRNA profiles in normal liver and identified miR-709, a highly abundant miRNA in this tissue. Through microarray analysis, gene targets were identified. Thirty-six genes were significantly down-regulated >2-fold in the miR-709-treated relative to the control group, and at least three of them, including Ras-related protein 11b (Rab11b), phosphatidylcholine transfer protein (Pctp), and carboxylesterase 1g (Ces1g), are direct targets. miR-709 regulates genes implicated in cytoskeleton organization, extracellular matrix attachment, cell proliferation and fatty acid metabolism, suggesting a coordinated response during cell division, when cytoskeleton remodeling requires substantial changes in gene expression.

Publication Title

Gene targets of mouse miR-709: regulation of distinct pools.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98302
Sonic Hedgehog subgroup medulloblastomas
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98298
Transcriptomic analysis of primary and metastatic Sonic Hedgehog subgroup medulloblastomas
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

We report findings that illuminate a dynamic metastasis pathway in the common pediatric brain tumor medulloblastoma.

Publication Title

ATOH1 Promotes Leptomeningeal Dissemination and Metastasis of Sonic Hedgehog Subgroup Medulloblastomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-TABM-18
Transcription profiling by array of 35 different Arabidopsis ecotypes
  • organism-icon Arabidopsis thaliana
  • sample-icon 55 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Seedlings of 35 different Arabidopsis thaliana ecotypes were compared. Triplicates were performed of 10 ecotpyes, single arrays of 25 ecotypes.

Publication Title

Diversity of flowering responses in wild Arabidopsis thaliana strains.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48060
Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Whole-genome gene expression analysis has been successfully utilized to diagnose, prognosticate, and identify potential therapeutic targets for cardiovascular disease. However, the utility of this approach to identify outcome-related genes and dysregulated pathways following first-time myocardial infarction (AMI) remains unknown and may offer a novel strategy to detect affected expressome networks that predict long-term outcome. Whole-genome microarray and targeted cytokine expression profiling on blood samples from normal cardiac function controls and first-time AMI patients within 48-hours post-MI revealed expected differential gene expression profiles enriched for inflammation and immune-response pathways in AMI patients. To determine molecular signatures at the time of AMI that could prognosticate long-term outcomes, transcriptional profiles from sub-groups of AMI patients with (n=5) or without (n=22) any recurrent events over an 18-month follow-up were compared. This analysis identified 559 differentially expressed genes. Bioinformatic analysis of this differential gene set for associated pathways revealed 1) increasing disease severity in AMI patients is associated with a decreased expression of the developmental epithelial-to-mesenchymal transition, and 2) modulation of cholesterol transport genes that include ABCA1, CETP, APOA1, and LDLR is associated with clinical outcome. In conclusion, differentially regulated genes and modulated pathways were identified that predicted recurrent cardiovascular outcomes in first-time AMI patients. This cell-based approach for risk stratification in AMI warrants a larger study to determine the role of metabolic remodeling and regenerative processes required for optimal outcomes. A validated transcriptome assay could represent a novel, non-invasive platform to anticipate modifiable pathways and therapeutic targets to optimize long-term outcome for AMI patients.

Publication Title

Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE103615
Genome-wide profiling of genes during differentiation of wild type (WT) murine embryonic stem cells (ESCs), scrambled control (SCR) ESCs and Mageb16-depleted (KD) ESCs
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.

Publication Title

Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36168
Expression data from LCMV-infected P14 and Akt transgenic P14 CD8 T cells
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The PI3K/Akt signaling pathway impacts various aspects of CD8 T cell homeostasis, such as effect versus memory cell differentiation, during viral infection. We used microarrays to determine which downstream molecules were affected and what other signaling pathways were interconnected with the Akt pathway by constitutive activation of Akt in LCMV-infected CD8 T cells.

Publication Title

Signal integration by Akt regulates CD8 T cell effector and memory differentiation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE57801
MMS induced expression changes
  • organism-icon Mus musculus, Drosophila melanogaster
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE57788
MMS induced expression changes (Drosophila)
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Despite the high toxicity, alkylating agents are still at the forefront of several clinical protocols used to treat cancers. In this study, we investigated the mechanisms underlying alkylation damage responses, aiming to identify novel strategies to augment alkylating therapy efficacy. In this pursuit, we compared gene expression profiles of evolutionary distant cell types (D. melanogaster Kc167 cells, mouse embryonic fibroblasts and human cancer cells) in response to the alkylating agent methyl-methanesulfonate (MMS). We found that many responses to alkylation damage are conserved across species independent on their tumor/normal phenotypes. Key amongst these observations was the protective role of NRF2-induced GSH production primarily regulating GSH pools essential for MMS detoxification but also controlling activation of unfolded protein response (UPR) needed for mounting survival responses across species. An interesting finding emerged from a non-conserved mammalian-specific induction of mitogen activated protein kinase (MAPK)-dependent inflammatory responses following alkylation, which was not directly related to cell survival but stimulated the production of a pro-inflammatory, invasive and angiogenic secretome in cancer cells. Appropriate blocking of this inflammatory component blocked the invasive phenotype and angiogenesis in vitro and facilitated a controlled tumor killing by alkylation in vivo through inhibition of alkylation-induced angiogenic response, and induction of tumor healing.

Publication Title

Combined Gene Expression and RNAi Screening to Identify Alkylation Damage Survival Pathways from Fly to Human.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact