Human skin consists of multiple cell types, including epithelial, immune, and stromal cells. Transcriptomic analyses have previously been performed from bulk skin samples or from epithelial and immune cells expanded in cell culture. However, transcriptomic analysis of bulk skin tends to drown out expression signals from relatively rare cells while cell culture methods may significantly alter cellular phenotypes and gene expression profiles. To identify distinct transcriptomic profiles of multiple cell populations without substantially altering cell phenotypes, we employed a fluorescence activated cell sorting method to isolate keratinocytes, dendritic cells, CD4+ T effector cells, CD4+ Treg cells, and CD8+ T effector cells from healthy skin samples, followed by RNA-seq of each cell population. Principal components analysis revealed distinct clustering of cell types across samples, while differential expression and coexpression network analyses revealed transcriptional profiles of individual cell populations distinct from bulk skin, most strikingly in the least abundant CD8+ T effector population. Our work provides a high resolution view of cutaneous cellular gene expression and suggests that transcriptomic profiling of bulk skin may inadequately capture the contribution of less abundant cell types. Overall design: Transcriptomic profiles from keratinocyte, dendritic cell, CD4+ T cell, CD4+ Treg cells, and CD8+ T cell populations were obtained from surgical skin discards from 11 healthy adults. Cell populations from whole skin were sorted via FACS and transcripts generated using an Illumina HiSeq 2500 platform. RNA-seq data for the bulk control samples were originally deposited in GEO study GSE74697.
Transcriptional landscape of epithelial and immune cell populations revealed through FACS-seq of healthy human skin.
Specimen part, Disease stage, Subject
View SamplesHuman skin samples from cutaneous lupus subtypes, psoriasis, and normal patients were used to corroborate findings of Fas Ligand elevation in a murine model of cutaneous lupus
Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus-like inflammation.
Specimen part, Disease, Disease stage
View SamplesIt has long been recognized that anatomic location is an important feature for defining distinct subtypes of plaque psoriasis. However, little is known about the molecular differences between scalp, palmoplantar, and conventional plaque psoriasis. To investigate the molecular heterogeneity of these psoriasis subtypes, we performed RNA-seq and flow cytometry on skin samples from individuals with scalp, palmoplantar, and conventional plaque psoriasis, along with samples from healthy control patients. We performed differential expression analysis and network analysis using weighted gene coexpression network analysis (WGCNA). Our analysis revealed a core set of 763 differentially expressed genes common to all sub-types of psoriasis. In contrast, we identified 605, 632, and 262 genes uniquely differentially expressed in conventional, scalp, and palmoplantar psoriasis, respectively. WGCNA and pathway analysis revealed biological processes for the core genes as well as subtype-specific genes. Flow cytometry analysis revealed a shared increase in the percentage of CD4+ T regulatory cells in all psoriasis subtypes relative to controls, whereas distinct psoriasis subtypes displayed differences in IL-17A, IFN-gamma, and IL-22 production. This work reveals the molecular heterogeneity of plaque psoriasis and identifies subtype-specific signaling pathways that will aid in the development of therapy that is appropriate for each subtype of plaque psoriasis. Overall design: Transcriptomic profiles were obtained from palmoplantar (n = 3), scalp (n = 8), and conventional psoriatic skin (n = 8) as well as healthy control skin (n = 9) biopsies on the Illumina HiSeq 2000/4000 platforms. Multi-parameter FACS was also performed on each biopsy sample to obtain T cell populations (CD4+ T effectors, CD8+ T cells, and CD4+Foxp3+ Tregs).
RNA-seq and flow-cytometry of conventional, scalp, and palmoplantar psoriasis reveal shared and distinct molecular pathways.
Specimen part, Disease, Disease stage, Subject
View SamplesCytochrome oxydases and quinol monooxygenase were removed from the E. coli genome resulting in oxygen-independent physiology
Deletion of genes encoding cytochrome oxidases and quinol monooxygenase blocks the aerobic-anaerobic shift in Escherichia coli K-12 MG1655.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.
Sex
View SamplesThis study tested the hypothesis that mRNA expression profiles change in the muscular type rat saphenous artery during early postnatal development. To explore this, we performed mRNA microarray analysis on muscular type saphenous arteries of young (10-12 days) and adult (2-3 months) rats.
Alteration of mRNA and microRNA expression profiles in rat muscular type vasculature in early postnatal development.
Sex
View SamplesThis SuperSeries is composed of the SubSeries listed below.
STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.
Cell line
View SamplesActivation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).
STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.
Cell line
View SamplesActivation of Signal Transducer and Activator of Transcription 3 (STAT3) is common in prostate cancers. STAT3 may induce cell proliferation and resistance to apoptosis, as well as promote tumor angiogenesis, invasion, and migration by activating gene expression. Many STAT3-dependent transcriptional responses are mediated through protein-protein interactions that involve the amino-terminal domain (N-domain).
STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain.
Cell line
View SamplesConditional deletion of Geminin from the entire hematopoietic compartment using Vav1:iCre mice led to defective hematopoiesis/dyserythropoiesis in E15.5 mouse embryos.
Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors.
Specimen part
View Samples