Sex differences in rat adrenal cortex are manifested as larger adrenal volume of cortex and higher corticosterone secretion by females compared with males. The molecular bases of these sex related differences are poorly understood.
Transcriptome Profile of Rat Adrenal Evoked by Gonadectomy and Testosterone or Estradiol Replacement.
Sex, Age, Specimen part
View SamplesAdropin is a multifunctional peptide hormone encoded by the ENHO (energy homeostasis associated) gene. It plays a role in mechanisms related to increased adiposity, insulin resistance, as well as glucose and lipid metabolism. The low adropin levels are strongly associated with obesity independent insulin resistance. On the other hand, overexpression or exogenous administration of adropin improves glucose homeostasis. The multidirectional, adropin-related effects associated with the regulation of metabolism in humans also appear to be attributable to the effects of this peptide on the activity of various elements of the endocrine system including adrenal cortex. Therefore, the main purpose of the present study was to investigate the effect of adropin on proliferation and secretory activity in the human HAC15 adrenal carcinoma cell line.
Adropin Stimulates Proliferation and Inhibits Adrenocortical Steroidogenesis in the Human Adrenal Carcinoma (HAC15) Cell Line.
Specimen part, Cell line
View SamplesAdenosine deaminases that act on RNA (ADARs) catalyze the conversion of adenosine to inosine in dsRNA. C. elegans ADARs, ADR-1 and ADR-2, promote the expression of genes containing dsRNA structures by preventing their processing into siRNAs and silencing by RNAi. The 26G endogenous siRNA (endo-siRNA) pathway generates a subset of siRNAs distinct from those made in adr-1;adr-2 mutants, but using many of the same factors. We found that adr-1;adr-2;rrf-3 mutants, lacking both ADARs and the RNA-dependent RNA polymerase RRF-3 required for the 26G pathway, display a bursting phenotype rescued by the RNAi factors RDE-1 and RDE-4. To determine what gene expression changes underlie the synthetic phenotype of adr-1;adr-2;rrf-3 mutants, we sequenced poly(A)+ RNA from adr-1;adr-2;rrf-3 embryos, their parent strains, and strains rescued with mutations in rde-1 and rde-4. We found that genes associated with edited structures were robustly downregulated in adr-1;adr-2;rrf-3 mutants in a manner partially dependent on rde-1 and rde-4. Additionally, genes induced during Orsay virus infections were induced in rrf-3 mutants and further upregulated in adr-1;adr-2;rrf-3 mutants, again dependent in part on rde-1 and rde-4. Overall design: RNAseq of poly(A)+ RNA from C.elegans mixed-stage embryos, four biological replicates per genotype, six genotypes: wildtype (Bristol N2), adr-1(uu49);adr-2(uu28), rrf-3(uu56), adr-1(uu49);adr-2(uu28);rrf-3(uu56), adr-1(uu49);adr-2(uu28);rrf-3(uu56);rde-1(uu51), and adr-1(uu49);adr-2(uu28);rrf-3(uu56);rde-4(uu53).
<i>C. elegans</i> ADARs antagonize silencing of cellular dsRNAs by the antiviral RNAi pathway.
Subject
View SamplesTo investigate the relationship between histones, chaperone function, and cataracts, we performed RNA-seq, isothermal titration calorimetry (ITC), size-exclusion chromatography, and gel electrophoresis of histones. The RNA-seq of postnatal lenses from 2-day-old cryaa -R49C mice revealed increased histone gene expression, suggesting that a a-crystallin mutation regulates histones via a transcriptional mechanism . Overall design: RNA-seq studies on lenses of 2-day-old wild-type and 2-day-old cryaa-R49C heterozygous mutant and cryaa-R49C homozygous mutant knock-in mice; and 14-day old wild-type and 14-day-old cryab-R120G heterozygous mutant and cryab-R120G homozygous mutant knock-in mice
Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract.
Cell line, Subject
View SamplesInjury to anterior cruciate ligament (ACL) is common in young individuals and a frequent cause of functional instability and early onset of osteoarthritis. The healing potential of an injured ACL is known to decay over time. The molecular origin of this healing deficiency largely remains elusive but plausibly involves gene transcripts associated with tissue healing. To explore this possibility, we set out to identify transcript expression differences in injured ACL remnants recovered at the time of surgical reconstruction, via microarray (n=24) and RNA-seq (n=8) technologies in transcriptome profiling. We found that time-from-injury was an important determinant of changes in gene expression signatures predominately resulting in repression of several biological processes as identified by gene ontology. The most interesting observation was a time-dependent decline in the gene transcripts as well as the biological processes common to both microarray and RNA-seq analyses. Compared to acute tears, in chronic several important biological processes were namely extracellular matrix organization, angiogenesis, cell adhesion, wound healing, mesenchyme transition, and response to hypoxia. Furthermore, the cross-platform concordance in terms of differentially expressed transcripts or enriched pathways was linearly correlated (r=0.64). Microfluidic digital PCR confirmed the expression of selected differentially expressed transcripts. These intriguing findings suggest an initial attempt of the injured ACL to repair, which drops with time. These findings have implications for efforts to repair the ACL and may be relevant for its reconstruction. These findings also emphasize the utility of differentially expressed transcripts as prognostic biomarkers in patients with ACL injury. Overall design: Examination of transcript expression differences by time-from-injury in anterior cruciate ligament
Advantages of RNA-seq compared to RNA microarrays for transcriptome profiling of anterior cruciate ligament tears.
No sample metadata fields
View SamplesThis study identified genomwide KCl inducible readthrough transcription. The project also includes a Cap-Seq experiment to identify transcriptional start sites, demonstrating that KCl does not activate downstream transcriptional start sites, but indeed does induce readthrough
Widespread Inducible Transcription Downstream of Human Genes.
No sample metadata fields
View SamplesGain-of-function mutations in exon 3 of beta-catenin (CTNNB1) are specific for Wilms' tumors that have lost WT1, but 50% of WT1-mutant cases lack such "hot spot" mutations. To ask whether stabilization of beta-catenin might be essential after WT1 loss, and to identify downstream target genes, we compared expression profiles in WT1-mutant versus WT1 wild-type Wilms' tumors. Supervised and nonsupervised hierarchical clustering of the expression data separated these two classes of Wilms' tumor. The WT1-mutant tumors overexpressed genes encoding myogenic and other transcription factors (MOX2, LBX1, SIM2), signaling molecules (TGFB2, FST, BMP2A), extracellular Wnt inhibitors (WIF1, SFRP4), and known beta-catenin/TCF targets (FST, CSPG2, CMYC). Beta-Catenin/TCF target genes were overexpressed in the WT1-mutant tumors even in the absence of CTNNB1 exon 3 mutations, and complete sequencing revealed gain-of-function mutations elsewhere in the CTNNB1 gene in some of these tumors, increasing the overall mutation frequency to 75%. Lastly, we identified and validated a novel direct beta-catenin target gene, GAD1, among the WT1-mutant signature genes. These data highlight two molecular classes of Wilms' tumor, and indicate strong selection for stabilization of beta-catenin in the WT1-mutant class. Beta-Catenin stabilization can initiate tumorigenesis in other systems, and this mechanism is likely critical in tumor formation after loss of WT1.
CTNNB1 mutations and overexpression of Wnt/beta-catenin target genes in WT1-mutant Wilms' tumors.
No sample metadata fields
View SamplesTranscriptional dysregulation in a primary cortical neuron model of Huntington''s disease Overall design: RNA-seq of primary cortical neurons transduced with control vector, wildtype Htt or Mutant Htt.
The role of Twist1 in mutant huntingtin-induced transcriptional alterations and neurotoxicity.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.
Specimen part, Disease
View SamplesWe present a more extensive and yet precise assessment to elucidate differences and similarities in performance at numerous aspects including signal range, sensitivity to fold-change, and fidelity with TaqMan qRT-PCR. There were three levels of data examined: entire data sets, data derived from gene name annotation oriented subset of 15442 RefSeq genes, and data derived from transcript pattern defined subset of 7034 RefSeq genes. Our results showed a fair degree of overall correlation between all 6 platforms evaluated; but, to varying degrees, two RNA-seq protocols outperformed three of the microarray platforms in most categories. Notably, a fourth microarray platform, Agilent, was comparable, or marginally superior, to the RNA-seq protocols within these same assessments. Furthermore, 3 platforms (Agilent and two RNA-seq methods) demonstrated over 80% concordance with the gold standard TaqMan assay in terms of fold-change accuracy. Our study suggests that the use of transcript patterns can enhance a number of the observed cross-platform correlations, indicating a potential usefulness for similar evaluations.
Multi-platform assessment of transcriptional profiling technologies utilizing a precise probe mapping methodology.
Disease
View Samples