refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 846 results
Sort by

Filters

Technology

Platform

accession-icon GSE89997
Expression data from 2 cohorts of human pancreatic ductal adenocarcinoma (PDAC) tumors
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

In this dataset, we included expression data obtained from 30 resected human PDAC tumors, to examine what genes are differentially expressed in different cohorts that might lead to various outcomes

Publication Title

Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP090108
RNA Sequencing Quantitative Analysis of RNA editing sites of Wild Type and ADAR1 editing deficient (ADAR1E861A) murine fetal RNA of various tissues
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The Adar1 deaminase inactive mutant mouse tissue samples were obtain from the Walkley lab as described in http://www.ncbi.nlm.nih.gov/pubmed/26275108. We performed mmPCR-seq on the samples and measured the editing levels of. Overall design: Fetal mRNA profiles of E12.5 wild type (WT) and ADAR E861A mutant mice were generated by deep sequencing using Illumina HiSeq 2000.

Publication Title

Dynamic landscape and regulation of RNA editing in mammals.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE77167
Differential gene expression analysis of peripheral blood leukocytes reveals overexpression of tumor progression-related genes in patients with intra-abdominal infection after surgery for colon cancer: a prospective matched cohort study
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The aim was to investigate the effect of postoperative intra-abdominal infection on the gene expression patterns of peripheral blood leukocytes (PBL) after surgery for colorectal cancer

Publication Title

Peripheral blood leucocytes show differential expression of tumour progression-related genes in colorectal cancer patients who have a postoperative intra-abdominal infection: a prospective matched cohort study.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE37138
Exon array analysis of the response to bevacizumab/erlotinib in advanced non-small cell lung cancer
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

In the current study, we used exon arrays and clinical samples from a previous trial (SAKK 19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response (EGFR, KRAS, VEGFA).

Publication Title

EGFR exon-level biomarkers of the response to bevacizumab/erlotinib in non-small cell lung cancer.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP061412
Transcriptome analysis of RANK-positive and RANK-negative luminal progenitor subpopulations in the human breast
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RANK-positive and RANK-negative luminal progenitor cells were isolated by FACS from histologically normal human breast tissue from wild-type human donors. RNA-seq gene expression profiling was used to find differentially expressed genes between the RANK-positive and RANK-negative cell populations. Overall design: Cells were isolated from 4 human patients. A paired analysis was used to compare RANK-positive and RANK-negative cells within patients.

Publication Title

RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31637
Tumor Suppressor BRCA1 epigenetically controls oncogenic miRNA-155
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

BRCA1, a well-known breast and ovarian cancer susceptibility gene with multiple interacting partners, is predicted to have diverse biological functions. However, to date its only well-established role is in the repair of damaged DNA and cell cycle regulation. In this regard, the etiopathological study of low penetrant variants of BRCA1 provides an opportunity to uncover its other physiologically important functions. Using this rationale, we studied the R1699Q variant of BRCA1, a potentially moderate risk variant, and found that it does not impair DNA damage repair but abrogates the repression of miR-155, a bona fide oncomir. We further show that in the absence of functional BRCA1, miR-155 is up-regulated in BRCA1-deficient mouse mammary epithelial cells, human and mouse BRCA1-deficienct breast tumor cell lines as well as tumors. Mechanistically, we found that BRCA1 represses miR-155 expression via its association with HDAC2, which deacetylates H2A and H3 on the miR-155 promoter. Finally, we show that over-expression of miR-155 accelerates whereas the knockdown of miR-155 attenuates the growth of tumor cell lines in vivo. Taken together, our findings demonstrate a new mode of tumor suppression by BRCA1 and reveal miR-155 as a potential therapeutic target for BRCA1-deficient tumors.

Publication Title

Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31611
Expression data from embryoid body with BRCA1 mutation [mRNA]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We examined the functional significance of the R1699Q variant of human BRCA1 gene using a mouse ES cell-based assay.

Publication Title

Tumor suppressor BRCA1 epigenetically controls oncogenic microRNA-155.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP130961
RNA sequencing of sorted microglia from NEFH-tTa/tetO-hTDP43 transgenic mouse whole spinal cord
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Microglia are the resident myeloid-lineage cells in the central nervous system. Despite myriad observations of microglia associated with various tissue pathologies in degenerative disease, their function in and contributions to the pathophysiological processes remain unclear. It is particularly uncertain whether microglia act harmfully to contribute to worsening of degeneration, act beneficially to combat disease-related dysfunction, or perform functions that result in both outcomes. In this dataset, we report RNA sequencing results from mice that undergo inducible ALS/FTLD-like degeneration and subsequent recovery. The goals were to identify whether microglia show transcriptional signatures commensurate with the disease stage or if they remain constant throughout. Additionally, we sought to understand whether there was a particular transcriptional or functional signature associated with functional recovery in the mice. The latter could lead to an understanding of how microglia may be targeted to combat disease and enhance recovery following or during degeneration. Overall design: mRNA profiles from microglia sorted from whole-spinal cord taken from doxycycline (DOX) inducible NEFH-tTa/tetO-208-hTDP43 (rNLS8, (+/+)) mice. In these mice, removal of doxycycline from the diet (DOX-OFF) induces transgenic expression and degeneration and reintroduction (DOX-ON) suppresses expression and enables recovery. We report profiles from rNLS8 mice that were DOX-OFF for 2 weeks (N=8) or 6 weeks (N=7), or DOX-OFF for 6 weeks followed by DOX-ON for 1 week (N=9). We also report profiles from control samples that include: rNLS8 mice that were DOX-ON for 6 weeks (N = 6) as asymptomatic genetic controls and WT (-/-) littermates that were DOX-OFF for 2 weeks (N=4), 6 weeks (N=1), or DOX-OFF for 6 weeks followed by 1 week DOX-ON (N=3) as asymptomatic doxycycline controls.

Publication Title

Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP111294
PARP14 controls the nuclear accumulation of a subset of type I Interferon-inducible proteins [RNA-seq1]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The enzymes of the poly-ADP-ribose polymerase (PARP) super-family control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several PARP genes was dynamically regulated upon macrophage activation by several inflammatory stimuli. Specifically, PARP14 was strongly induced by endotoxin stimulation and translocated to the nucleus in stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of interferon-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the transcription factor IRF3, including Ifnb1, thus reducing IFNß production and activation of ISGs involved in the secondary antiviral response. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins. Overall design: mRNA sequencing of differentially expressed genes in PARP14 WT and KO RAW 264.7 cells, upon: no treatment, LPS, Jak inhibitor or LPS plus Jak inhibitor treatment.

Publication Title

PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP111296
PARP14 controls the nuclear accumulation of a subset of type I Interferon-inducible proteins [RNA-seq2]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The enzymes of the poly-ADP-ribose polymerase (PARP) super-family control many relevant cellular processes, but a precise understanding of their activities in different physiological or disease contexts is largely incomplete. We found that transcription of several PARP genes was dynamically regulated upon macrophage activation by several inflammatory stimuli. Specifically, PARP14 was strongly induced by endotoxin stimulation and translocated to the nucleus in stimulated cells. Quantitative mass spectrometry analysis showed that PARP14 bound to a group of interferon-stimulated gene (ISG)-encoded proteins, most with an unknown function, and it was required for their nuclear accumulation. Moreover, PARP14 depletion attenuated transcription of primary antiviral response genes regulated by the transcription factor IRF3, including Ifnb1, thus reducing IFNß production and activation of ISGs involved in the secondary antiviral response. Overall, these data hint at a role of PARP14 in the control of antimicrobial responses and specifically in nuclear activities of a subgroup of ISG-encoded proteins. Overall design: mRNA sequencing of differentially expressed genes in PARP14 WT RAW 264.7 cells, with or without LPS treatment

Publication Title

PARP14 Controls the Nuclear Accumulation of a Subset of Type I IFN-Inducible Proteins.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact