refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 347 results
Sort by

Filters

Technology

Platform

accession-icon GSE6288
Transcriptional comparison between whole kidneys from E14.5 Wnt4 mutants and wildtype mice (MG_U74Av2 platform). (GUDMAP Series ID: 7)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Our laboratory's interest is in understanding the molecular principles that underlie the regional organization of the mammalian metanephric kidney. Our goal is to generate a detailed spatial map of the cellular expression of selected regulatory genes during mammalian kidney development. The goal of this study is to identify a population of genes that are enriched in the renal vesicle (RV) and its derivatives using Wnt4 mutants.

Publication Title

Transcriptional profiling of Wnt4 mutant mouse kidneys identifies genes expressed during nephron formation.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP159284
Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

In the central nervous system (CNS), the microRNAs (miRNAs), small endogenous RNAs exerting a negative post-transcriptional regulation on mRNAs, are involved in major functions, such as neurogenesis, and synaptic plasticity. Moreover, they are essential to define the specific transcriptome of the tissues and cell types. However, few studies were performed to determine the miRNome of the different structures of the rat CNS, even through rat is a major model in neuroscience. We determined the miRNome profile of the hippocampus, the cortex, the striatum, the spinal cord and the olfactory bulb, by small RNA-Seq. We found a total of 365 known miRNAs' and 90 novel miRNAs expressed in the CNS of the rat. Novel miRNAs seemed to be important in defining structure-specific miRNomes. Differential analysis showed that several miRNAs were specifically enriched/depleted in these CNS structures. Then, we correlated miRNAs' expression with the expression of their mRNA targets by mRNA-Seq. This analysis suggests that the transcriptomic identity of each structure is regulated by specific miRNAs. Altogether, these results suggest the critical role played by these enriched/depleted miRNAs in the functional identities of CNS structures. Overall design: miRNA and mRNA profile of 5 structures of the central nervous system of rat, for each structurewe analyzed three biological replicates

Publication Title

Small RNA-Seq reveals novel miRNAs shaping the transcriptomic identity of rat brain structures.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE41137
Impact of Ischemia and Procurement Conditions on Gene Expression in Renal Cell Carcinoma
  • organism-icon Homo sapiens
  • sample-icon 135 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Previous studies have shown that ischemia alters gene expression in normal and malignant tissues. There are no studies that evaluated effects of ischemia in renal tumors. This study examines the impact of ischemia and tissue procurement conditions on RNA integrity and gene expression in renal cell carcinoma.

Publication Title

Impact of ischemia and procurement conditions on gene expression in renal cell carcinoma.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE98905
The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Double Hit Lymphoma (DHL) were treated with the BRD4 inhibitor 100 nM CPI203 for 6h

Publication Title

The BET bromodomain inhibitor CPI203 overcomes resistance to ABT-199 (venetoclax) by downregulation of BFL-1/A1 in in vitro and in vivo models of MYC+/BCL2+ double hit lymphoma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE22597
Expression data from Fine Needle Aspiration (FNA) biopsies from breast cancer patients
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

This is a stage-matched case control study. Cases with clinical diagnosis of Inflammatory Breast Cancer (IBC) were selected after reviewing all medical records of the 440 FNA samples. IBC was defined as signs of erythema and edema (peau dorange) involving at least one third of the skin and rapid clinical presentation. Presence of tumor emboli in the dermal lymphatics of the involved skin in the pathology report was not required for inclusion as IBC. Controls were selected to match for T stage, all T4a-c tumors in the data set were included as controls. IBC breast cancer are all T4d breast cancer.

Publication Title

Different gene expressions are associated with the different molecular subtypes of inflammatory breast cancer.

Sample Metadata Fields

Age, Disease stage

View Samples
accession-icon GSE20271
Expression data from breast cancer FNA biopsies from patients
  • organism-icon Homo sapiens
  • sample-icon 171 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The behavior of breast cancers and their response to different chemotherapy treatments depend on their phenotype which is to a large extent determined by gene expression programs within the cancer cell.

Publication Title

Evaluation of a 30-gene paclitaxel, fluorouracil, doxorubicin, and cyclophosphamide chemotherapy response predictor in a multicenter randomized trial in breast cancer.

Sample Metadata Fields

Age, Race

View Samples
accession-icon GSE17700
Factorial study for evaluating the effect of Affy platform and lab on gene expression measurements
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Comparison of concordance in single and multi-gene genomic indices from data generated by two different laboratories (MD Anderson Cancer Center (MDA) and Jules Bordet Institute (JBI)) and on two different Affymetrix platforms (U113A and U133_Plus2).

Publication Title

Genomic index of sensitivity to endocrine therapy for breast cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP157936
Transcriptomic analysis of T84 colon carcinoma cell line treated with trametinib, JQ1 or their combination
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

T84 cells were treated with DMSO, 30nM trametinib (MEKi), 1µM JQ1 (BRD4i) or the combination of trametinib and JQ1 (combo) for 24h. Overall design: 3 replicates per condition were analyzed by RNA-seq.

Publication Title

Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP157753
Transcriptomic analysis of trametinib-resistant HCT116 colorectal carcinoma cells compared to the parental control cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

HCT116 cells were treated with with increasing concentrations of trametinib over 2 months. Drug-resistant clones emerged and were cultured in the presence of 30 nmol/L trametinib. These cells exhibited a greater than 10-fold increase in the GI50 for trametinib compared to the parental cell line. RNA-seq of the resistant clone HCT116_R4 versus the parental cells identified differentially expressed genes potentially involved in resistance. Overall design: For the parental and resistant clone, 3 replicates each were analysed by RNA-seq.

Publication Title

Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE39583
Transcriptional response of cap mesenchyme (undifferentiated nephron progenitors) to Wnt activation
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

During mammalian kidney development, mesenchymal nephron progenitors (cap mesenchyme) differentiate into the epithelial cells that go on to form the nephron. Although differentiation of nephron progenitors is triggered by activation of Wnt/b-catenin signaling, constitutive activation of Wnt/b-catenin signaling blocks epithelialization of nephron progenitors. Full epithelialization of nephron progenitors requires transient activation of Wnt/b-catenin signaling. We performed transcriptional profiling of nephron progenitors responding to constitutive or transient activation of Wnt/b-catenin signaling.

Publication Title

Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact