This experiment was set up in order to identify the (direct) transcriptional targets of the Ethylene Response Factor 115 (ERF115) transcription factor. Because ERF115 expression occurs in quiescent center (QC) cells and strong effects on the QC cells were observed in ERF115 overexpression plants, root tips were harvested for transcript profiling in order to focus on root meristem and QC specific transcriptional targets.
ERF115 controls root quiescent center cell division and stem cell replenishment.
Age, Specimen part
View SamplesGlucocorticoid resistance (GCR) is defined as an unresponsiveness to the anti-inflammatory properties of glucocorticoids (GCs) and their receptor, the glucocorticoid receptor (GR). It is a serious problem in the management of inflammatory diseases and occurs frequently. The strong pro-inflammatory cytokine TNF induces an acute form of GCR, not only in mice, but also in several cell lines, e.g. in the hepatoma cell line BWTG3, as evidenced by impaired Dexamethasone (Dex)-induced GR-dependent gene expression. We report that TNF has a significant and broad impact on the transcriptional performance of GR, but no impact on nuclear translocation, dimerization or DNA binding capacity of GR. Proteome-wide proximity-mapping (BioID), however, revealed that the GR interactome is strongly modulated by TNF. One GR cofactor that interacts significantly less with the receptor under GCR conditions is p300. NF?B activation and p300 knockdown both reduce transcriptional output of GR, whereas p300 overexpression and NF?B inhibition revert TNF-induced GCR, which is in support of a cofactor reshuffle model. This hypothesis is supported by FRET studies. This mechanism of GCR opens new avenues for therapeutic interventions in GCR diseases Overall design: Examination of GR induced gene expression in 4 conditions (1 control: NI and 3 treated: DEX, TNF, TNFDEX) starting from 3 biological replicates
TNF-α inhibits glucocorticoid receptor-induced gene expression by reshaping the GR nuclear cofactor profile.
Specimen part, Cell line, Treatment, Subject
View SamplesTo understand how haploinsufficiency of progranulin (PGRN) protein causes frontotemporal dementia (FTD), we created induced pluripotent stem cells (iPSC) from patients carrying the GRNIVS1+5G>C mutation (FTD-iPSCs). FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD and known to express PGRN. Although generation of neuroprogenitors was unaffected, their further differentiation into neurons, especially CTIP2-, FOXP2- or TBR1-TUJ1 double positive cortical neurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of PGRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNAseq analysis confirmed reversal of altered gene expression profile following genetic correction. Wnt signaling pathway, one of the top defective pathways in FTD-iPSC-derived neurons coupled with its reversal following genetic correction, makes it an important candidate. Therefore, we demonstrate for the first time that PGRN haploinsufficiency hampers corticogenesis in vitro. Overall design: We profiled 6 samples: two biological replicates for 3 conditions. Condition 1 consists of neuronal progeny derived from human Embryonic Stem Cells. Condition 2 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation. Condition 3 consists of neuronal progeny derived from induced pluripotent stem cells generated from patients carrying PGRN mutation, genetically modified to correct the PGRN defect.
Restoration of progranulin expression rescues cortical neuron generation in an induced pluripotent stem cell model of frontotemporal dementia.
No sample metadata fields
View SamplesThe transcriptional coactivator ANGUSTIFOLIA 3 (AN3) stimulates cell proliferation during Arabidopsis leaf development, but the molecular mechanism is largely unknown. We show here that inducible nuclear localization of AN3 during initial leaf growth results in differential expression of important transcriptional regulators, including GROWTH REGULATING FACTORs (GRFs). Chromatin purification further revealed the presence of AN3 at the loci of GRF5, GRF6, CYTOKININ RESPONSE FACTOR 2 (CRF2), CONSTANS-LIKE 5 (COL5), HECATE 1 (HEC1), and ARABIDOPSIS RESPONSE REGULATOR 4 (ARR4). Tandem affinity purification of protein complexes using AN3 as bait identified plant SWITCH/SUCROSE NONFERMENTING (SWI/SNF) chromatin remodeling complexes formed around the ATPases BRAHMA (BRM) or SPLAYED (SYD). Moreover, SWI/SNF ASSOCIATED PROTEIN 73B (SWP73B) is recruited by AN3 to the promoter of GRF5, GRF3, COL5, and ARR4, and both SWP73B and BRM occupy the HEC1 promoter. Furthermore, we show that AN3 and BRM genetically interact. The data indicate that AN3 associates with chromatin remodelers to regulate transcription. In addition, modification of SWI3C expression levels increases leaf size, underlining the importance of chromatin dynamics for growth regulation. Our results place the SWI/SNF-AN3 module as a major player at the transition from cell proliferation to cell differentiation in a developing leaf.
ANGUSTIFOLIA3 binds to SWI/SNF chromatin remodeling complexes to regulate transcription during Arabidopsis leaf development.
Specimen part, Time
View SamplesWe sequenced mRNA from 6 samples of FACsorted telencephalons from E14.5 Sip1|Nkx2-1 knockout and WT|Nkx2-1 control mouse embryos to find differentially expressed genes in the absence of the transcription factor Sip1. Overall design: Examination of mRNA levels in 3 control and 3 Sip1|Nkx2-1 knockout samples
Directed migration of cortical interneurons depends on the cell-autonomous action of Sip1.
Specimen part, Cell line, Subject
View SamplesGenetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting an essential driver role for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34+ thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from GSI treated T-ALL cell lines, ex vivo isolated Notch active CD34+ and Notch inactive CD4+CD8+ thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publically available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T-cell context. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way towards development of novel therapeutic strategies that target hyperactive Notch1 signaling in human T-cell acute lymphoblastic leukemia. Overall design: CUTLL1 cell lines were treated with Compound E (GSI) or DMSO (solvent control). Cells were collected 12 h and 48 h after treatment. This was performed for 3 replicates. RNA-sequencing was performed on these samples.
The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.
No sample metadata fields
View SamplesThe goal of this study was to gain insight into the molecular heterogeneity of capillary endothelial cells derived from different organs by microarray profiling of freshly isolated cells and identify transcription factors that may determine the specific gene expression profile of endothelial cells from different tissues. The study focused on heart endothelial cells and presents a validated signature of 31 genes that are highly enriched in heart endothelial cells. Within this signature 5 transcription factors were identified and the optimal combination of these transcription factors was determined for specification of the heart endothelial fingerprint.
Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake.
Sex, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Treatment
View Samples8 neuroblastoma (NB) cell lines (CLB-GA, IMR-32, SH-SY5Y, N206, CHP-902R, LAN-2, SK-N-AS, SJNB-1) were profiled on the Affymetrix HGU-133plus2,0 platform before and after treatment with DAC (2'-deoxy-5-azacytidine) to investigate the influence on expression after inhibiting DNA-methylation
Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.
Treatment
View SamplesGrowth daylength, ambient CO2 level, and intracellular hydrogen peroxide (H2O2) availability all impact plant function by modulating signalling pathways, but interactions between them remain unclear. Using a whole-genome transcriptomics approach, we exploited the conditional photorespiratory nature of the catalase-deficient cat2 mutant to identify gene expression patterns responding to these three factors. Arabidopsis Col-0 and cat2 grown for 5 weeks in high CO2 in short days (SD) were transferred to air in SD or long days (LD), and microarray analysis was performed. Of more than 500 genes differentially expressed in Col-0 between high CO2 and transfer to air in SD, the response of about one-third was attenuated by transfer to air in LD. H2O2-responsive genes in cat2 were highly dependent on daylength. The majority of H2O2-induced genes were more strongly up-regulated after transfer to air in SD than to LD, while a smaller number showed an opposing pattern. Responses of other H2O2-dependent genes indicate redox-modulation of the daylength control of fundamental cell processes. The overall analysis provides evidence that (1) CO2 level modulates stress-associated gene expression; (2) both CO2 and H2O2 interact with daylength and photoreceptor signalling pathways; and (3) cellular signalling pathways may be primed to respond to increased H2O2 in a daylength-determined manner.
Day length is a key regulator of transcriptomic responses to both CO(2) and H(2)O(2) in Arabidopsis.
Specimen part, Treatment
View Samples