The transcriptional basis for disrupted epidermal differentiation arising from TP63 AEC mutations remains to be elucidated. Here we present an organotypic model of AEC dysfunction that phenocopies differentiation defects observed in AEC patient skin. Transcriptional analysis of model AEC tissue revealed impaired induction of differentiation regulators, including OVOL1, GRHL3, KLF4, PRDM1 and ZNF750. Genome wide binding analyses of TP63 during epidermal differentiation showed direct binding of OVOL1, GRHL3, and ZNF750 promoters suggesting AEC mutants prevent normal activation of these targets by direct transcriptional interference. Remarkably, exogenous ZNF750 restores impaired epidermal differentiation caused by AEC mutation. Thus, repression of ZNF750 is central to disrupted epidermal differentiation in model AEC tissue.
Genomic profiling of a human organotypic model of AEC syndrome reveals ZNF750 as an essential downstream target of mutant TP63.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism.
Sex, Specimen part
View SamplesThe Fragile X Mental Retardation Protein, FMRP, is thought to regulate the translation of a specific set of neuronal mRNAs on polyribosomes. Therefore, we prepared polyribosomes on sucrose gradients and purified mRNA specifically from these fractions, as well as the total mRNA levels, to determine whether a set of mRNAs might be changed in its % association with polyribosomes in the absence of FMRP in the KO mouse model.
FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism.
Sex, Specimen part
View SamplesObjective: To study if diabetic and insulin-resistant states lead to mitochondrial dysfunction in the liver, or alternatively, if there is adaption of mitochondrial function to these states in the long-term range.
Liver adapts mitochondrial function to insulin resistant and diabetic states in mice.
Sex, Specimen part, Treatment
View SamplesSequencing of RNA isolated from the tibialis anterior muscles of 6 month old C57BL/6J mice that had been injected and electroporated with either a control non-targeting siRNA (NT) or two different UBR4 targeting siRNA sequences (UBR4 siRNA5 and siRNA7) to deplete UBR4. Muscles were harvested 7 days after electroporation and showed significant loss of UBR4 coincident with hypertrophy of type 2A and 2X myofibers. Overall design: 3 samples each of non targeting control and 2 siRNA UBR4 targeting constructs.
A Key Role for the Ubiquitin Ligase UBR4 in Myofiber Hypertrophy in Drosophila and Mice.
Age, Specimen part, Cell line, Subject
View SamplesTo identify the gene signature accounting for the distinct clinical outcomes in ovarian clear cell cancer patients
Identification of novel therapeutic targets in microdissected clear cell ovarian cancers.
Specimen part
View SamplesThe aim of this study is to survey global gene expression of total thymocytes from wild-type mice and Atg16l1 mutant (hypomorph) mice.
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.
No sample metadata fields
View SamplesSusceptibility to Crohn's disease, a complex inflammatory disease involving the small intestine, is controlled by over 30 loci. One Crohn's disease risk allele is in ATG16L1, a gene homologous to the essential yeast autophagy gene ATG16 (ref. 2). It is not known how ATG16L1 or autophagy contributes to intestinal biology or Crohn's disease pathogenesis. To address these questions, we generated and characterized mice that are hypomorphic for ATG16L1 protein expression, and validated conclusions on the basis of studies in these mice by analysing intestinal tissues that we collected from Crohn's disease patients carrying the Crohn's disease risk allele of ATG16L1. Here we show that ATG16L1 is a bona fide autophagy protein. Within the ileal epithelium, both ATG16L1 and a second essential autophagy protein ATG5 are selectively important for the biology of the Paneth cell, a specialized epithelial cell that functions in part by secretion of granule contents containing antimicrobial peptides and other proteins that alter the intestinal environment. ATG16L1- and ATG5-deficient Paneth cells exhibited notable abnormalities in the granule exocytosis pathway. In addition, transcriptional analysis revealed an unexpected gain of function specific to ATG16L1-deficient Paneth cells including increased expression of genes involved in peroxisome proliferator-activated receptor (PPAR) signalling and lipid metabolism, of acute phase reactants and of two adipocytokines, leptin and adiponectin, known to directly influence intestinal injury responses. Importantly, Crohn's disease patients homozygous for the ATG16L1 Crohn's disease risk allele displayed Paneth cell granule abnormalities similar to those observed in autophagy-protein-deficient mice and expressed increased levels of leptin protein. Thus, ATG16L1, and probably the process of autophagy, have a role within the intestinal epithelium of mice and Crohn's disease patients by selective effects on the cell biology and specialized regulatory properties of Paneth cells.
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells.
No sample metadata fields
View SamplesDuring human pregnancy, a subset of placental cytotrophoblasts (CTBs) differentiates into cells that aggressively invade the uterus and its vasculature, anchoring the progeny and rerouting maternal blood to the placenta. In preeclampsia (PE), CTB invasion is limited, reducing placental perfusion and/or creating intermittent flow. This syndrome, affecting 4-8% of pregnancies, entails maternal vascular alterations (e.g., high blood pressure, proteinuria, and edema) fetal growth restriction. The only cure is removal of the faulty placenta, i.e., delivery. Previously we showed that defective CTB differentiation contributes to the placental component of PE, but the causes were unknown. Here, CTBs isolated from PE and control placentas were cultured for 48 h, enabling differentiation/invasion. In various severe forms of PE, transcriptomics revealed common aberrations in CTB gene expression immediately after isolation that resolved in culture. The upregulated genes included SEMA3B. Adding this protein to normal CTBs inhibited invasion and re-created aspects of the phenotype of these cells in PE. Additionally, SEMA3B downregulated VEGF signaling through the PI3K/AKT and GSK3 pathways, effects that were observed in PE CTBs. We propose that, in severe PE, the in vivo environment dysregulates CTB gene expression, the autocrine actions of the upregulated molecules, including SEMA3B, impair differentiation/invasion/signaling and patient-specific factors determine the signs.
Reversal of gene dysregulation in cultured cytotrophoblasts reveals possible causes of preeclampsia.
Specimen part
View SamplesRNA was isolated from fluorescence activated cell sorted (FACS) Lgr5-GFP+ and Lgr5-GFP- from aged matched subcutaneously implanted Apcmin/+;KrasLSL-G12D/+;VillinCre; Lgr5DTReGFP;p53KO (AKVPL) and Apcmin/+;KrasLSL-G12D/+;VillinCre; Lgr5DTReGFP;p53KO;SMAD4KO (AKVPSL) intestinal tumours. "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0009421 Overall design: Gene expression profiling of Lgr5+ and Lgr5- tumour cells from AKVPL and AKVPSL murine derived intestinal tumours
A distinct role for Lgr5<sup>+</sup> stem cells in primary and metastatic colon cancer.
Subject
View Samples