Expression of the EMT-inducing transcription factor Snail is enhanced in different human cancers. To investigate the in vivo role of Snail during progression of epithelial cancer, we used a mouse model with skin-specific overexpression of Snail. Snail transgenic mice spontaneously developed distinct histological subtypes of skin cancer, such as basal cell carcinoma, squamous cell carcinoma and sebaceous gland carcinoma. Development of sebaceous gland carcinomas strongly correlated with the direct and complete repression of Blimp-1, a central regulator of sebocyte homeostasis. Snail expression in keratinocyte stem cells significantly promotes their proliferation associated with an activated FoxM1 gene expression signature, resulting in a larger pool of Mts24-marked progenitor cells. Furthermore, primary keratinocytes expressing Snail showed increased survival and strong resistance to genotoxic stress. Snail expression in a skin-specific p53-null background resulted in accelerated formation of spontaneous tumours and enhanced metastasis. Our data demonstrate that in vivo expression of Snail results in de novo epithelial carcinogenesis by allowing enhanced survival, expansion of the cancer stem cell pool with accumulated DNA damage, a block in terminal differentiation and increased proliferation rates of tumour-initiating cells.
Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential.
Sex, Age, Specimen part
View SamplesHeterochromatic non-coding RNAs induce breast tumor formation in mice by interacting with BRCA1-associated proteins functioning in the DNA damage response. Overall design: mouse tumor mRNA profiles using ribosomal mRNA depletion
Heterochromatin-Encoded Satellite RNAs Induce Breast Cancer.
Specimen part, Cell line, Subject
View SamplesThe goal of this study is to compare genes expressed by IFN-gamma treated HTR-8/SVneo cells to genes expressed in untreated control HTR-8/SVneo cells to identify genes which play a role during IFN-gamma-mediated HTR-8/SVneo cells invasion Overall design: cDNA libraries were made from total RNA of untreated control and 24 h IFN-gamma treated samples by TruSeq RNA Library Prep Kit v2. Deep sequencing of cDNA libraries were performed with the help of Illumina Genome Analyzer IIx. Raw sequence data was imported into the CLC Genomics Workbench 6.5.1. software. The sequence reads were trimmed for adapter sequences and low quality base. The trimmed raw sequences were subjected to mRNA-sequence analysis, by mapping them to Human Genome GRCH37.p.13 .
BST2 regulates interferon gamma-dependent decrease in invasion of HTR-8/SVneo cells via STAT1 and AKT signaling pathways and expression of E-cadherin.
Specimen part, Treatment, Subject
View SamplesTo search for rapid changes in gene expression following BCR activation, we performed DNA microarray analysis of activated splenic B cells with and without anti-IgM treatment for 3 hour. The expression of a remarkably large set of genes differed significantly.
Initiation of antigen receptor-dependent differentiation into plasma cells by calmodulin inhibition of E2A.
Age, Specimen part
View SamplesTranscriptome of S. cerevisiae in shifts between glucose and maltose media with different re-growth conditions Overall design: Cells are pregrown in maltose, then grown for different durations in glucose and then washed back to maltose
A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.
Subject
View SamplesIn this study, we confirmed that transformed dedifferentiated astrocytes and neurons acquired a stem/progenitor cell state, although they still retained gene expression memory from their parental cell-type. Transcriptional network analysis on transformed cells revealed up-regulation of genes involved in three signaling pathways: Wnt signaling, cell cycle and focal adhesion with the gene Spp1, also known as osteopontin (OPN) serving as a key node connecting these three pathways. Inhibition of OPN blocked the formation of aggregated neurospheres, affected the proliferative capacity of transformed cell-types and reduced the expression levels of neural stem cell markers. Specific inhibition of OPN in murine glioma tumors prolonged mice survival. We conclude that OPN is an important player in dedifferentiation of cells during tumor formation, hence its inhibition can be a therapeutic target for glioblastoma. Overall design: Cortical neurons and astrocytes were derived from 11 days old SynapsinI-Cre and GFAP-Cre mice, respectively. The cells were cultured in their respective media to maintain their identity. These cells were then transduced with HRas-shp53 lentivirus with a transduction efficiency of >90%. The transduced neurons and astrocytes were later switched to neural stem cell media devoid of serum and supplemented with FGF-2 (NSC media). Within one week, these cells became proliferative and aggregated to form free-floating neurospheres. These cells, hereinafter referred to as NSynR53 and AGR53, respectively, were later harvested and mRNA collected for sequencing library generation using DP-seq. To assess the regression of these cells to an undifferentiated state along the differentiation axis, enriched populations of mESC and NSC were also grown in vitro and mRNA obtained from these cells were subjected to sequencing library preparation.
Identification of therapeutic targets for glioblastoma by network analysis.
No sample metadata fields
View SamplesBJAB cells over expressing KSHV PAN RNA
Regulation of viral and cellular gene expression by Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA.
No sample metadata fields
View SamplesThe objective of this study was to determine the effects of LANA on the expressions of the cellular genes. Overall design: BJAB cells were transduced with lentiviral vector expressing LANA or the control vector, total RNA was extracted for the detection of relative expression of cellular genes in LANA expressing cells.
KSHV LANA upregulates the expression of epidermal growth factor like domain 7 to promote angiogenesis.
Specimen part, Cell line, Subject
View SamplesTargeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression. Targeting immunomodulatory pathways has ushered a new era in lung cancer therapy. Further progress requires deeper insights into the nature and dynamics of immune cells in the lung cancer micro-environment. Dendritic cells (DCs) represent a heterogenous and highly plastic immune cell system with a central role in controlling immune responses. The intratumoral infiltration and activation status of DCs emerge as clinically relevant parameters in lung cancer. In this study we used an orthotopic preclinical model of lung cancer to interrogate the transcriptome of lung tumor-infiltrating DCs and extract novel biologically and clinically relevant information. Lung tumor-infiltrating leukocytes expressing generic DC markers were found to predominantly consist of CD11b+ cells which, compared to peritumoral lung DC counterparts, strongly over-express the T cell inhibitory molecule PD-L1 and acquire classic markers of tumor-supporting macrophages (TAM) on their surface. Transcriptome analysis of these CD11b+ tumor-infiltrating DCs (TIDCs) indicates impaired anti-tumoral immunogenicity, confirms the skewing towards TAM-related features, and indicates exposure to a hypoxic environment. In paralled, TIDCs display a specific micro-RNA signature dominated by the prototypical lung cancer oncomir miR-31. Hypoxia was found to drive intrinsic miR-31 expression in CD11b+DCs. Conditioned medium of mir-31-overexpressing CD11b+DCs induces pro-invasive lung cancer cell shape changes and is enriched with the pro-metastatic factors S100A8 and S100A9. Finally, analysis of TCGA datasets reveals that the TIDC-associated miRNA signature has a negative prognostic impact in non-small cell lung cancer. Together, these data suggest a novel mechanism through which lung cancer co-opts the plasticity of the DC system to support tumoral progression.
The transcriptome of lung tumor-infiltrating dendritic cells reveals a tumor-supporting phenotype and a microRNA signature with negative impact on clinical outcome.
Specimen part
View SamplesIn order to understand the complexity of gene regulation downstream of IIS, we did RNA-seq in mixed culture in wild-type, daf-2(e1370), daf-16(mgDf50);daf-2(e1370) and daf-2(e1370);daf-12(m20 and correlated it with ChIP-seq data Overall design: RNA-seq profile of different mutants in mix stage
Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans.
Subject
View Samples