Previous reports have defined three subsets of mouse NK cells on the basis of the expression of CD27 and CD11b. The developmental relationship between these subsets was unclear. To address this issue, we evaluated the overall proximity between mouse NK cell subsets defined by CD27 and CD11b expression using pangenomic gene expression profiling. The results suggest that CD27+CD11b-, CD27+CD11b+ and CD27-CD11b+ correspond to three different intermediates stages of NK cell development.
Maturation of mouse NK cells is a 4-stage developmental program.
No sample metadata fields
View SamplesDAP12 is a transmembrane protein, expressed as a disulfide-bonded homodimer and bears an immunoreceptor tyrosine-based activation motif (ITAM). DAP12 is broadly expressed in hematopoietic cells and associates with a variety of cell surface receptors in lymphoid and myeloid cells. Macrophages express several DAP12-associated receptors including triggering receptors expressed by myeloid cells (TREM)-1,2 and 3, myeloid DAP12-associating lectin (MDL)-1, CD200R like proteins CD200R3/R4 and CD300C/D/E .
Essential role of DAP12 signaling in macrophage programming into a fusion-competent state.
No sample metadata fields
View SamplesPurpose: Controlling the balance between immunity and immunopathology is crucial for host resistance to pathogens. Upon infection, activation of the hypothalamic-pituitary-adrenal (HPA) axis leads to the production of glucocorticoids (GCs). However, the pleiotropic effects of these steroid hormones make it difficult to decipher their precise role in vivo. Our purpose was to study how GCs regulate the function of group 1 ILCs in spleen and liver upon Murine Cytomegalovirus (MCMV) infection. Methods: We studied the in vivo effect of endogenous GCs released upon MCMV infection on NK cells in spleen and liver and ILC1s in the liver. We compared WT mice with GRNcr1-iCre mice, in which the gene encoding for GC receptor (GR) is selectively deleted in Ncr1+ cells. Results: We found that the regulation of NK function by the GR is required for host protection against MCMV. Mechanistically, endogenous GCs produced shortly after infection induce the selective and tissue-specific expression of the immune checkpoint PD1 on NK cells. This GC-PD1 pathway mediates its immunoregulatory functions by limiting interferon (IFN)-g production by splenic NK cells, preventing lethal immunopathology. Importantly, this regulation does not compromise viral clearance. Conclusions:The fine-tuning of a selective subset of ILCs by the HPA axis preserves tissue integrity without impairing pathogen elimination, revealing a novel aspect of neuro-immune regulation. Overall design: Splenocytes (after NK cell enrichment with the mouse NK Cell Isolation Kit II, Miltenyi Biotec) and liver lymphocytes were pooled from three mice for each genotype. A FACS Aria III (BD Biosciences) was used to sort approximately 5 x 10^5 NK cells from the spleen and liver and 5 x 10^4 liver-resident ILC1s 44h post MCMV infection. We compared gene expression between glucocorticoid receptor (GR)-sufficient and deficient ILCs to identify the genes whose expression is regulated by GCs. Three biological replicates were generated for all samples except for the GRNcr1-iCre liver ILC1s sample (two biological replicates).
Endogenous glucocorticoids control host resistance to viral infection through the tissue-specific regulation of PD-1 expression on NK cells.
Sex, Specimen part, Subject
View SamplesUnderstanding Natural Killer (NK) cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR) NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs) expressing the retinoic acid receptor-related orphan receptor gammat (RORgammat) transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We identified a novel cell subset of CD56dimNKp46low cells that includes RORgammat+ILCs with a lineage-CD94-CD117brightCD127bright phenotype.We also included data regarding the genome-wide transcriptional profiles of human healthy colonic NK cells and RORgammat+ILCs.The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases.
Mapping of NKp46(+) Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues.
Specimen part
View SamplesGroup 3 innate lymphoid cells (ILC3) are composed of NCR- and NCR+ subsets located at mucosal sites exposed to billions of commensal microbes and potentially harmful pathogens. Together with T cells, the various ILC3 subsets maintain the balance between homeostasis and immune activation. Using genetic mapping, we reveal here the existence of a new subset of NCR- ILC3 transiently expressing Ncr1 but strongly related to unlabeled NCR- ILC3, demonstrating previously unsuspected heterogeneity within the NCR- ILC3 population. Notch signaling is required for the differentiation of NCR- ILC3 into NCR+ ILC3. However, we show here that Notch signaling must be sustained for the maintenance of the NCR+ phenotype and that TGF-ß impairs the development of NCR+ ILC3. Thus, ILC3 diversity and the plasticity of the NCR- and NCR+ subsets is regulated by the balance between the opposing effects of Notch and TGF-ß signaling, maintaining homeostasis in the face of continual challenges. Overall design: Transcriptional profiling of three ILC subsets (NCR-FM-, NCR-FM- and NCR+FM+) using RNA sequencing
Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells.
Specimen part, Cell line, Subject
View SamplesDendritic cells (DCs) are a complex group of cells which play a critical role in vertebrate immunity. Spleen or lymph node resident DCs are subdivided into conventional DC (cDC) subsets (CD11b and CD8alpha in mouse; BDCA1 and BDCA3 in man) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To bring novel insights into these questions, we sought conserved genetic signatures for these DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes.
Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling.
No sample metadata fields
View SamplesMurine Cytomegalovirus (MCMV) infection leads to the activation of various immune cells, including dendritic cells (DCs) and Natural Killer (NK) cells. This activation is partly driven by innate cytokines including IFN-I, which are induced early after infection. The objective was to address the role of different innate cytokines in shaping DC subsets and NK cell responses, in particular the role of cell intrinsic responses to IFN-I.
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Specimen part
View SamplesDendritic cells (DCs) are a complex group of cells which play a critical role in vertebrate immunity. They are subdivided into conventional DC (cDC) subsets (CD11b and CD8alpha in mouse) and plasmacytoid DCs (pDCs). Natural killer cells are innate lymphocytes involved in the recognition and killing of abnormal self cells, including virally infected cells or tumor cells. DCs and NK cells are activated very early upon viral infections and regulate one another. However, the global responses of DC and NK cells early after viral infection in vivo and their molecular regulation are not entirely characterized. The goal of this experiment was to use global gene expression profiling to assess the global genetic reprogramming of DC and NK cells during a viral infection in vivo, as compared to B lymphocytes, and to investigate the underlying molecular mechanisms
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Sex, Specimen part
View SamplesThe injection of the pathogen-associated molecular pattern Polyinosinic-polycytidylic acid (poly(I:C)) leads to the activation of various immune cells, including dendritic cells (DCs) and Natural Killer (NK) cells. This activation is due to different innate cytokines produced early after injection, in particular IFN-I. The objective of the study was to compare the pattern of expression of IFN-I stimulated genes between DC and NK cells.
Differential responses of immune cells to type I interferon contribute to host resistance to viral infection.
Specimen part
View SamplesNatural killer (NK) cells are NKp46+CD3- lymphocytes that can perform granule-dependent cytotoxicity and produce interferon-gamma, when isolated from blood, lymphoid organs, lung, liver and uterus. Here we identify in dermis, gut lamina propria and cryptopatches, very distinct populations of NKp46+CD3- cells with reduced ability to degranulate and to produce interferon-gamma. In gut, the transcription factor RORgamma-t and CD127 (IL-7R alpha) defined a novel subset of NKp46+CD3- that is reminiscent of lymphoid tissue inducer (LTi)-like cells. Gut ROR gamma t+NKp46+ cells produced IL-22 in contrast to ROR-gamma t-independent lamina propria and dermis NK cells. These data show that LTi-like cells and NK cells share unanticipated similarities and reveal the heterogeneity of NKp46+CD3- cells in innate immunity, lymphoid organization and local tissue repair.
Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin.
Sex, Age
View Samples