refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 35 results
Sort by

Filters

Technology

Platform

accession-icon GSE20030
Expression Data from BALB/c and Stat6-deficient bone marrow derived macrophages (BMDM)
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to find Stat6 dependent genes in control and IL-4 exposed bone marrow derived macrophages.

Publication Title

Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20276
Silencing of C2TA reveals the autonomous role of medullary thymic epithelial cells in central CD4 T cell tolerance
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

[original title] Tissue-specific silencing of C2TA reveals the autonomous role of medullary thymic epithelial cells in central CD4 T cell tolerance.

Publication Title

Autonomous role of medullary thymic epithelial cells in central CD4(+) T cell tolerance.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42835
Expression data of hepatic iNKT cells from pLck-hCD1d transgenic mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

CD1d expression by thymocytes is required to select iNKT cells. When CD1d is expressed only on thymocytes (pLck-CD1d tg mice), iNKT cells are hyperresponsive to antigen stimulation suggesting that, in physiological conditions, these cells undergo functional education mediated by additional CD1d-expressing cells. Here, we investigated the mechanisms of this functional education. We find that peripheral iNKT cells from pLck-CD1d tg mice express significantly less SHP-1, a tyrosine phosphatase negatively regulating TCR signaling, than WT cells. iNKT cells from heterozygous SHP-1-mutated motheaten mice, displaying similar SHP-1 reduction as pLck-CD1d tg iNKT cells, are antigen-hyperresponsive. Restoring normal CD1d expression in pLck-CD1d tg mice normalizes SHP-1 expression and responsiveness of iNKT cells. In WT mice, iNKT cells upregulate SHP-1 and decrease responsiveness upon emigration from thymus to periphery. This depends on contacts with CD1d-expressing DCs. iNKT cell functional education is therefore controlled by DCs via tuning SHP-1 expression level in the periphery.

Publication Title

Functional education of invariant NKT cells by dendritic cell tuning of SHP-1.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE47679
B cell-intrinsic STAT6 controls the germinal center response in type 2 immunity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

By investigating the germinal center (GC) formation in STAT6ko/WT bone marrow-mixed chimera we found that GC formation in type 2 immune responses is dependent on B cell intrinsic expression of IL-4/IL-13-induced genes. We therefore used microarrays to find Stat6 dependent genes that are important for germinal center formation and/or organization after infection with the nematode Nippostrongylus brasiliensis (N. brasiliensis).

Publication Title

B-cell-intrinsic STAT6 signaling controls germinal center formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE83212
Hypocotyl and cotyledon transcriptome in Arabidopsis thaliana treated with 1 ppm ethylene and shade (low PAR, low blue and low R:FR)
  • organism-icon Arabidopsis thaliana
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

Plants have evolved shoot elongation mechanisms to escape from diverse environmental stresses such as flooding and vegetative shade. The apparent similarity in growth responses suggests possible convergence of the signalling pathways. Shoot elongation is mediated by passive ethylene accumulating in flooded plant organs and by changes in light quality and quantity under vegetation shade. Here we study hypocotyl elongation as a proxy for shoot elongation and delineated Arabidopsis hypocotyl length kinetics in response to ethylene and shade. Based on these kinetics, we further investigated ethylene and shade-induced genome-wide gene expression changes in hypocotyls and cotyledons separately. Both treatments induced a more extensive transcriptome reconfiguration in the hypocotyls compared to the cotyledons. Bioinformatics analyses suggested contrasting regulation of growth promotion- and photosynthesis-related genes. These analyses also suggested an induction of auxin, brassinosteroid and gibberellin signatures and the involvement of several candidate regulators in the elongating hypocotyls. Pharmacological and mutant analyses confirmed the functional involvement of several of these candidate genes and physiological control points in regulating stress-escape responses to different environmental stimuli. We discuss how these signaling networks might be integrated and conclude that plants, when facing different stresses, utilise a conserved set of transcriptionally regulated genes to modulate and fine tune growth.

Publication Title

Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE24077
Molecular characterization of the submergence response of Arabidopsis thaliana ecotype Columbia
  • organism-icon Arabidopsis thaliana
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

This study profiles transcriptomic changes of Arabidopsis thaliana Col-0 in response to submergence. This dataset includes CEL files, RMA signal values and MAS5 P/M/A calls from total mRNA populations of plants at 9 to 10 leaf rosette stage. Biological replicates of root and shoot tissues were harvested after 7 h and 24 h of submergence in darkness along with corresponding non-submerged dark controls. To characterize the dark response, non-submerged light controls plants were harvested at the 0 h time point. Quantitative profiling of cellular mRNAs was accomplished with the Affymetrix ATH1 platform. Changes in the transcriptome in response to submergence and early darkness were evaluated, and the data led to identification of genes co-regulated at the conditional and organ-specific level.

Publication Title

Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE39010
Expression data from Arabidopsis petioles in early stage dense canopy
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Growth in dense stands induces shade avoidance responses. Early responses to neighbors seem to be assoctaed with touch, not light signalling.

Publication Title

Plant neighbor detection through touching leaf tips precedes phytochrome signals.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27669
Expression data from Arabidopsis Col-0 expressing FLAG-SUB1A or FLAG-SUB1C rice ERFs
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In rice (Oryza sativa L.), the haplotype at the multigenic SUBMERGENCE 1 (SUB1) locus determines survival of prolonged submergence. SUB1 encodes two or three group VII Ethylene Response Factor (ERF) family transcription factors, SUB1A, SUB1B and SUB1C. A highly submergence-inducible SUB1A allele is present in lines that are submergence tolerant. This gene is the determinant of submergence tolerance. Here, the heterologous ectopic expression of rice SUB1A and SUB1C in Arabidopsis thaliana was employed to assess the transcriptional network mobilized by ectopic expression of SUB1A and SUB1C.

Publication Title

Expression of rice SUB1A and SUB1C transcription factors in Arabidopsis uncovers flowering inhibition as a submergence tolerance mechanism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29187
Impact of RAP2.12 alterations on gene expression in hypoxic and aerobic conditions
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

In this study we analyzed the effect of overexpression of an HA-tagged version of the ERF RAP2.12 on the transcriptome levels in aerobic and hypoxic-treated (O2 21% and 1%, respectively) Arabidopsis thaliana rosettes.

Publication Title

Oxygen sensing in plants is mediated by an N-end rule pathway for protein destabilization.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE45728
Expression data from low R:FR - SA crosstalk in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Low R:FR signaling through phytochromes induces shade avoidance responses, including petiole elongation. Salicylic acid-mediated defense against pathogens is inhibited under these conditions.

Publication Title

Perception of low red:far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact