refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE143710
Expression data from in vitro keratinocytes exposed to extracellular vesicles from UVA-irradiated melanocytes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Analysis of altered gene expression in keratinocytes exposed to extracellular vesicles. In this dataset we include the respective expression data.

Publication Title

Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE90954
Effect of TGFb treatment (1 ng/ml) on gene expression in Hepa1-6 cells
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The goal of the study is a high-throughput evaluation of the effect of TGFb treatment on gene expression.

Publication Title

Resolving the Combinatorial Complexity of Smad Protein Complex Formation and Its Link to Gene Expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE95770
Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD mutant leukemia cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Patients relapsing with FLT3-ITD mutant acute myeloid leukemia (AML) after allogeneic hematopoietic cell transplantation (allo-HCT) have a one-year-survival below 20%. We observed that sorafenib increased IL-15 production by FLT3-ITD+-leukemia cells, which synergized with the allogeneic CD8+T-cell response, leading to long-term survival in murine and humanized FLT3-ITD+AML models. Using IL-15 deficiency in recipient tissues or leukemia cells, IL-15 production upon sorafenib-treatment could be attributed to leukemia cells. Sorafenib treatment-related IL-15 production caused an increase in CD8+CD107a+IFN-+ T-cells with features of longevity (Bcl-2high/reduced PD-1-levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced ATF4 expression, thereby blocking negative regulation of IRF7-activation, which enhances IL-15 transcription. Consistent with the mouse data, IL-15 and pIRF7 levels increased in leukemic blasts of FLT3-ITD+AML patients upon sorafenib treatment. Analysis of 130 patients with FLT3-ITD-mutant AML relapsing after allo-HCT showed the highest complete remission-rate and median overall-survival-rate in the sorafenib/donor lymphocyte infusion (DLI) group compared to all other groups (chemotherapy, chemotherapy/DLI, sorafenib alone). Our findings indicate that the synergism of DLI and sorafenib is mediated via reduced ATF4 expression, causing activation of the pIRF7/IL-15-axis in leukemia cells. The sorafenib/DLI strategy therefore has the potential for an immune-mediated cure of FLT3-ITD-mutant AML- relapse, an otherwise fatal complication after allo-HCT.

Publication Title

Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact