Cortical tubers in patients with tuberous sclerosis complex (TSC) are associated with cognitive disability and intractable epilepsy. While these developmental malformations are believed to result from the effects of TSC1 or TSC2 Gene mutations, the molecular mechanisms leading to tuber formation during brain development as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform as a genome-wide strategy to define the Gene expression profile of cortical tubers resected during epilepsy surgery compared to histologically normal perituberal tissue (adjacent to the cortical tuber) from the same patients or autopsy control tissue.
Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors.
Specimen part, Disease, Subject
View SamplesThe C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: Ikaros RNA-Seq from double positive thymocytes comparing wt (n=2), Ikaros-ZnF1-/- mutant (n=2) and Ikaros-ZnF4-/- mutant (n=2)
Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.
Sex, Age, Specimen part, Cell line, Subject
View SamplesThe C2H2 zinc finger is the most prevalent DNA-binding motif in the mammalian proteome, with DNA-binding domains usually containing more tandem fingers than are needed for stable sequence-specific DNA recognition. To examine the reason for the frequent presence of multiple zinc fingers, we generated mice lacking finger 1 or finger 4 of the 4-finger DNA-binding domain of Ikaros, a critical regulator of lymphopoiesis and leukemogenesis. Each mutant strain exhibited a specific subset of the phenotypes observed with Ikaros null mice. Of particular relevance, fingers 1 and 4 contributed to distinct stages of B- and T-cell development and finger 4 was selectively required for tumor suppression in thymocytes and in a new model of BCR-ABL+ acute lymphoblastic leukemia. These results, combined with transcriptome profiling (this GEO submission: RNA-Seg of whole thymus from wt and the two ZnF mutants), reveal that different subsets of fingers within multi-finger transcription factors can regulate distinct target genes and biological functions, and they demonstrate that selective mutagenesis can facilitate efforts to elucidate the functions and mechanisms of action of this prevalent class of factors. Overall design: RNA-Seq from sorted primary proB cell Hardy Fractions B and C+C'', comparing wt, Ikaros-ZnF1-/- mutant and Ikaros-ZnF4-/- mutant.
Selective regulation of lymphopoiesis and leukemogenesis by individual zinc fingers of Ikaros.
Specimen part, Cell line, Subject
View SamplesLiver X Receptors (LXRa and ß) are ligand-activated transcription factors that play a key role in the control of lipid homeostasis, as well as modulation of immunity and inflammation. Besides ligand binding, LXR activity can be regulated by posttranslational modifications, such as phosphorylation. This study aims to assess changes in bone marrow derived macrophage transcriptional profiles of mice that carry LysMcre directed phosphorylation deficient-version of LXRa compared (S196A) to wild-type (WT). Overall design: BMDM mRNA profiles of either LdlrKO or M-LXRa-S196A-LdlrKO male mice after being fed a Western diet for 12 weeks. 12 samples, 4 groups, in triplicate: (1) LdlrKO basal, (2) LdlrKO+ ligand, (3) M-LXRa-S196A-LdlrKO basal, (4) M-LXRa-S196A-LdlrKO+ligand
Disrupting LXRα phosphorylation promotes FoxM1 expression and modulates atherosclerosis by inducing macrophage proliferation.
Specimen part, Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Insufficiency of phosphatidylethanolamine N-methyltransferase is risk for lean non-alcoholic steatohepatitis.
Specimen part, Time
View SamplesFetal mice (16 days gestation) were administered feline immunodeficiency virus (FIV)-based lentiviral viral particles containing the gene encoding GFP. Six liver tumors developed in three mice between the ages of 273 and 484 days, each mouse developed 2 tumors. These tumors and non-tumorous liver tissue from the same animals and animals that did not develop tumors and untransduced controls were harvested and microarrays were performed on total RNA extracted from these samples. We were interested in investigating the link between lentiviral integration and gene expression.
Transduction of fetal mice with a feline lentiviral vector induces liver tumors which exhibit an E2F activation signature.
Sex, Age, Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).
No sample metadata fields
View SamplesMicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).
No sample metadata fields
View SamplesGene expression profiling to determine transcriptome changes following Snail or Slug expression in MCF-7 breast cancer cells
The transcription factors Snail and Slug activate the transforming growth factor-beta signaling pathway in breast cancer.
Cell line, Treatment
View SamplesThe ER stress inducing agent Thapsigargin (TG) and/or the cytoprotective agent Salubrinal were applied to lymphoblastoid cell lines. TG induced lytic replication as well as a distinct pattern of gene expression changes. This study was designed to identify host genes mediating lytic replication secondary to ER stress.
Endoplasmic reticulum stress causes EBV lytic replication.
Specimen part, Treatment, Time
View Samples