refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 97 results
Sort by

Filters

Technology

Platform

accession-icon GSE9946
Comparison of stimulatory and inhibitory dendritic cell subsets reveals new role of DC in granulomatous infection
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Myeloid dendritic cells (DC) and macrophages play an important role in pathogen sensing and antimicrobial defense. Recently we demonstrated that infection of human DC with intracellular bacterium Listeria monocytogenes (L.monocytogenes) leads to the induction of the immunoinhibitory enzyme indoleamine 2,3-dioxygenase (Popov et al., J Clin Invest, 2006), while in the previous studies L.monocytogenes infection was associated with a rather stimulatory DC phenotype. To clarify this discrepancy we performed comparative microarray analysis of immature mo-DC (immDC), mature stimulatory mo-DC (matDC) and mature inhibitory DC either stimulated with prostaglandin E2 (PGE2-DC) or infected with L.monocytogenes (infDC). Studying infection of human myeloid DC with Listeria monocytogenes, we found out, that infected DC are modified by the pathogen to express multiple inhibitory molecules, including indoleamine 2,3-dioxygenase (IDO), cyclooxygenase-2, interleukin 10 and CD25, which acts on DC as IL-2 scavenger. All these inhibitory molecules, expressed on regulatory DC (DCreg), are strictly TNF-dependent and are in concert suppressing T-cell responses. Moreover, only DCreg can efficiently control the number of intracellular listeria, mostly by IDO-mediated mechanisms and by other factors, remaining to be identified. Analyzing publicly acessible data of transcriptional changes in DC and macrophages, infected by various pathogens and parasites (GEO, GSE360), we noticed that infection of these cells with Mycobacterium tuberculosis causes transcriptional response, comparable with the one caused by listeria in human DC. In fact, granuloma in tuberculosis and listeriosis in vivo are enriched for myeloid DC and macrophages characterized by regulatory phenotype.

Publication Title

Infection of myeloid dendritic cells with Listeria monocytogenes leads to the suppression of T cell function by multiple inhibitory mechanisms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE111678
RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 253 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Many cases of acute myeloid leukemia (AML) are associated with mutational activation of RTKs such as FLT3. However, RTK inhibitors have limited clinical efficacy as single agents, indicating that AML is driven by concomitant activation of different signaling molecules. We used a functional genomic approach to identify RET, encoding an RTK not previously implicated in AML, as essential gene in different AML subtypes, and observed that RET-dependent AML cells show activation of RET signaling via ARTN/GFRA3 and NRTN/GFRA2 ligand/co-receptor complexes.

Publication Title

RET-mediated autophagy suppression as targetable co-dependence in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE61786
Loss of the Histone Methyltransferase EZH2 induces Resistance to Multiple Drugs in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE61715
Loss of the Histone Methyltransferase EZH2 induces Resistance to Multiple Drugs in Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Here, we analyzed global gene expression changes that were associated with drug resistance in Acute Myeloid Leukemia using the Affymetrix microarray platform.

Publication Title

Loss of the histone methyltransferase EZH2 induces resistance to multiple drugs in acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15390
FOXP3-mediated inhibition of the global gene regulator SATB1 is required for maintaining regulatory T cell commitment
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Regulatory T (Treg) cells are involved in self tolerance, immune homeostasis, prevention of autoimmunity, and suppression of immunity to pathogens or tumours. The forkhead transcription factor FOXP3 is essential for Treg cell development and function as mutations in FOXP3 cause severe autoimmunity in mice and humans. However, the FOXP3-dependent molecular mechanisms leading to this severe phenotype are not well understood. Here we introduce the chromatin remodelling enzyme SATB1 (special AT-rich sequence-binding protein-1) as an important target gene of FOXP3. So far, SATB1 has been associated with normal thymic T-cell development, peripheral T-cell homeostasis, TH1/TH2 polarization, and reprogramming of gene expression. In natural and induced murine and human FOXP3+ Treg cells SATB1 expression is significantly reduced. While there is no differential epigenetic regulation of the SATB1 locus between Treg and Teffector cells, FOXP3 reduces SATB1 expression directly as a transcriptional repressor at the SATB1 locus and indirectly via miR-155 induction, which specifically binds to the 3UTR of the SATB1 mRNA. Reduced SATB1 expression in FOXP3+ cells achieved either by overexpression or induction of FOXP3 is linked to significant reduction in TH1 and TH2 cytokines, while loss of FOXP3 function either by knock down or genetic mutation leads to significant upregulation of SATB1 and subsequent cytokine production. Alltogether, these findings demonstrate that reduced SATB1 expression in Treg cells is necessary for maintenance of a Treg-cell phenotype in vitro and in vivo and places SATB1-mediated T cell-specific modulation of global chromatin remodelling central during the decision process between effector and regulatory T-cell function.

Publication Title

Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP063901
The binding specificity and regulatory effect of WT and redesigned Puf2p [RNA-Seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PUF proteins have become a leading scaffold for designing RNA-binding proteins to contact and control RNAs at will. We analyze the effects of that reengineering across the transcriptome in vivo for the first time. We show, by HITS-CLIP and PAR-CLIP, that S. cerevisiae Puf2p, a non-canonical PUF protein, binds more than 1000 mRNA targets. Puf2p binds multiple UAAU elements, unlike canonical PUF proteins. We also perform CLIP-seq on truncations of Puf2p, showing that its prion domain is dispensable for WT binding. We design a modified Puf2p to bind UAAG rather than UAAU, which allows us to align the protein with the binding site. In vivo, the redesigned protein binds UAAG sites. Its altered specificity redistributes the protein away from 3'UTRs, such that the protein tracks with its sites and binds throughout the mRNA. We use RNA-seq to determine that R1 SNE Puf2p represses a novel RNA network.  Overall design: CLIP-seq was performed in BY4742 S. cerevisiae grown in log phase, and using 2 replicates of TAP-tagged proteins. RNA-seq was performed to determine the regulatory effect of WT or mutant Puf2p, using 4 replicates of the control (no Puf2p), 3 of WT Puf2p and 4 of R1 SNE Puf2p.

Publication Title

Target selection by natural and redesigned PUF proteins.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP058313
RNA sequencing of ILK-deficient hair follicle bulge stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from FACS purified hair follicle bulge stem cells from 21 d old control and ILK-deficient mice, 3 biological replicates each Overall design: Examination of mRNA levels in control and ILK-deficient hair follicle bulge stem cells

Publication Title

Integrin-linked kinase regulates the niche of quiescent epidermal stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP132018
In-vitro stimulation of healthy donor blood with IL-3 cytokine
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This experiment was designed to look for in vitro IL-3 gene signature in donor blood at two different time points (6 and 24 hours). RNA from lysed whole blood cells was used for the sequencing. Overall design: Lysed whole blood from seven healthy donors was stimulated with recombinant human IL-3 for 6 hours, or 24 hours, prior to RNA extraction for next-generation sequencing on the Illumina HiSeq platform. Unstimulated samples were included as controls.

Publication Title

A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Subject, Time

View Samples
accession-icon GSE56365
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fueled matrix metalloproteinase production
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid -oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated -oxidation-fueled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homolog of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.

Publication Title

Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26403
Gene therapy of Mpl -/- mouse LSK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.

Publication Title

Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact