This experiment aims to identify the biological pathways and diseases associated with the cytokine Interleukin 13 (IL-13) using gene expression measured in peripheral blood mononuclear cells (PBMCs). Overall design: The experiment comprised of samples obtained from 3 healthy donors. The expression profiles of in vitro IL-13 stimulation were generated using RNA-seq technology for 3 PBMC samples at 24 hours. The transcriptional profiles of PBMCs without IL-13 stimulation were also generated to be used as controls. An IL-13R-alpha antagonist (Redpath et al. Biochemical Journal, 2013) was introduced into IL-13 stimulated PBMCs and the gene expression levels after 24h were profiled to examine the neutralization of IL-13 signaling by the antagonist.
Combining multiple tools outperforms individual methods in gene set enrichment analyses.
No sample metadata fields
View SamplesWe have developed a microfluidics-based in vitro model of the human gut allowing co-culture of human and microbial cells and subsequent multi-omic assessment of the effect of the co-culture on the host transcriptome.
A microfluidics-based in vitro model of the gastrointestinal human-microbe interface.
Specimen part, Treatment
View SamplesDespite accepted health benefits of dietary fiber, little is known about the mechanisms by which fiber deprivation impacts the gut microbiota and alters disease risk. Using a gnotobiotic model, in which mice were colonized with a synthetic human gut microbiota, we elucidated the functional interactions between dietary fiber, the gut microbiota and the colonic mucus barrier, which serves as a primary defence against pathogens. We show that during chronic or intermittent dietary fiber deficiency, the gut microbiota resorts to host-secreted mucus glycoproteins as a nutrient source, leading to erosion of the colonic mucus barrier. Dietary fiber deprivation promoted greater epithelial access and lethal colitis by the mucosal pathogen, Citrobacter rodentium, but only in the presence of a fiber-deprived microbiota that is pushed to degrade the mucus layer. Our work reveals intricate pathways linking diet, gut microbiome and intestinal barrier dysfunction, which could be exploited to improve health using dietary therapeutics.
A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility.
Specimen part
View SamplesDatabase of gene expression in different haematopoietic cell types at haemosphere.org Overall design: Comparison of gene expression in different haematopoietic cell types
Haemopedia RNA-seq: a database of gene expression during haematopoiesis in mice and humans.
Specimen part, Subject
View SamplesG-CSF is a hemopoietic growth factor that has a role in steady state granulopoiesis, as well as in mature neutrophil activation and function. We developed a neutralizing monoclonal antibody to the murine G-CSF receptor (G-CSFR), which antagonizes binding of murine G-CSF and inhibits G-CSFR signalling. Anti-G-CSFR rapidly halts the progression of established disease in collagen antibody-induced arthritis (CAbIA). Neutrophil accumulation in joints is inhibited, without rendering animals neutropenic, suggesting an effect on homing to inflammatory sites. Neutrophils in the blood and arthritic joints of anti-G-CSFR treated mice show alterations in cell adhesion receptors, while anti-G-CSFR suppresses local production of proinflammatory cytokines and chemokines known to drive tissue damage. Our aim in this study was to use differential gene expression analysis of joint and blood neutrophils to more thoroughly understand the effect of G-CSFR blockade on the inflammatory response following anti-G-CSFR therapy in CAbIA.
Therapeutic Targeting of the G-CSF Receptor Reduces Neutrophil Trafficking and Joint Inflammation in Antibody-Mediated Inflammatory Arthritis.
Sex, Specimen part, Disease, Disease stage, Treatment
View SamplesA systematic survey of the transcriptional status of individual segments of the developing chick hindbrain (r1-5) and the adjacent region of the embryonic midbrain (m) during the HH11 stage of chick development
Transcriptomic analysis of midbrain and individual hindbrain rhombomeres in the chick embryo.
Specimen part
View SamplesC. elegans GLD-2 forms an active PAP with multiple RNA-binding partners to regulate diverse aspects of germline and early embryonic development. One GLD-2 partner, RNP-8, was previously shown to influence oocyte fate specification. To identify transcripts selectively associated with both GLD-2 and RNP-8, we employ a genomic approach using the method of RNA immunoprecipitation followed by microarray analysis (RIP-chip).
GLD-2/RNP-8 cytoplasmic poly(A) polymerase is a broad-spectrum regulator of the oogenesis program.
Sex, Specimen part, Disease
View SamplesRNA-seq with male and female juvenile and adult spinal cords Overall design: RNA was isolated from 4 week and 8 week spinal cords for sequencing
Age and Sex-Related Changes to Gene Expression in the Mouse Spinal Cord.
Sex, Age, Specimen part, Cell line, Subject
View SamplesDifferent wheat cultivars may be classified as either winter or spring varieties depending on whether they require exposure to an extended period of cold in order to become competent to flower. Using a growth regime that mimics the conditions that occur during a typical winter in Britain, we wished to survey the genes that are involved in phase transition as well as those involved in cold-acclimation.
Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth.
No sample metadata fields
View SamplesIn prior work we developed an optogenetic system for delivering highly precise, time-varying inputs to Ras, termed OptoSOS (Toettcher et al., 2013). This system relies on a membrane-targeted photoswitchable protein (Phy-CAAX) and a cytoplasmic Ras activator (PIF-SOScat) whose localization to the membrane can be controlled with light. In this system, Phy/PIF heterodimerization can be triggered on and off by exposure to 650 and 750 nm light, respectively. We found that this system could be used to deliver highly precise levels and dynamics of Ras/Erk signaling both in vitro and in vivo. Here, we aimed to globally assess the transcriptional response to light-activated Ras and compare it to that induced by growth factor stimulation. We stimulated NIH3T3 OptoSOS cells with either constant activating red light or PDGF and measured transcriptional responses by RNAseq. Total mRNA was collected after 0, 30, 60 and 120 minutes and used to track the dynamics of transcript abundance in both conditions. Genes were defined as upregulated if they satisfied two criteria: (i) induced at least three-fold over unstimulated cells, and (ii) induced at least two consecutive timepoints. By these criteria we detected 118 genes that were upregulated within 2 h by either PDGF or light stimulation, a comparable number of Ras-responsive genes to that found in previous studies. We found that both PDGF and light induced nearly identical profiles of gene expression, with 100/118 genes induced by PDGF and 110/118 induced by light. At each time point we found excellent agreement between the levels of gene induction in response to both stimuli. This agreement also extended to response dynamics. where hierarchical clustering revealed three classes of dynamic response: an early response peaking within 30 min, an intermediate response peaking at ~1 h, and a late response where gene expression gradually increased over the full 2 h timecourse. In all three classes, we found that light and PDGF led to highly similar expression changes over time. We thus concluded that sole stimulation of the Ras/Erk pathway by light was sufficient to recapitulate at least the first two hours of the PDGF-induced transcriptional response. Overall design: RNA-seq to measure global transcript abundance at various timepoints after PDGF stimulation or direct optogenetic activation of Ras using the OptoSOS system in NIH3T3 cells (Toettcher et al, Cell 2013). 9 samples were collected using the TruSeq library preparation kit (Illumina), multiplexed, pooled and measured in 3 lanes of an Illumina Hi-Seq 2000. Library quality was assessed by Agilent Bioanalyzer. Roughly 30-50 million reads were measured per sample across all 3 lanes. Baseline transcript abundance was measured in triplicate (0 min controls) and each successive timepoint was measured in a single collection. Genes were considered upregulated if they were induced at least 5-fold in at least two consecutive timepoints relative to their baseline abundance.
Tracing Information Flow from Erk to Target Gene Induction Reveals Mechanisms of Dynamic and Combinatorial Control.
Specimen part, Subject
View Samples