The thorough characterization of the transcriptome of endogenous podocytes has been hampered by low yields of cell isolation procedures. Here we introduce a double fluorescent reporter mouse model combined with an optimized bead perfusion protocol and efficient single cell dissociation yielding more than 500,000 podocytes per mouse allowing for global, unbiased downstream applications. Combining mRNA transcriptional profiling revealed programs of highly specific gene regulation tightly controlling cytoskeleton, cell differentiation, endosomal transport and peroxisome function in podocytes. Strikingly, the analyses further predict that these podocyte-specific gene regulatory networks are accompanied by alternative splicing of respective genes. In summary, the presented omics approach will facilitate the discovery and integration of novel gene, protein and organelle regulatory networks that deepen our systematic understanding of podocyte biology.
Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks.
Specimen part
View Samples3D cultivation of cells lead to changes in morphology of the cells. This is likely to explain the higher radioresistance of cells growing in 3D compared to cells growing in 2D cell culture.
Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair.
Specimen part, Cell line
View Samples