refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
    0
github link
Build and Download Custom Datasets
refine.bio helps you build ready-to-use datasets with normalized transcriptome data from all of the world’s genetic databases.
Showing
of 37 results
Sort by

Filters

Technology

Platform

accession-icon GSE101882
Gene expression of young, middle-aged and old Drosophila melanogaster exposed to different levels of larval and adult diet
  • organism-icon Drosophila melanogaster
  • sample-icon 216 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Many studies have addressed the effects of adult diet on gene expression in Drosophila melanogaster, however, little is known about how developmental diet influences adult gene expression, and how this interacts with adult dietary conditions.

Publication Title

Relating past and present diet to phenotypic and transcriptomic variation in the fruit fly.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36582
Expression data from middle-aged and old Drosophila females
  • organism-icon Drosophila melanogaster
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The mechanisms underlying natural variation in lifespan and ageing rate remain largely unknown.

Publication Title

Transcriptome analysis of a long-lived natural Drosophila variant: a prominent role of stress- and reproduction-genes in lifespan extension.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE13714
HOXA9 is required for survival in human MLL rearranged acute leukemias
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Leukemias that harbor translocations involving the mixed lineage leukemia gene (MLL) possess unique biological characteristics and often have an unfavorable prognosis. Gene expression analyses demonstrate a distinct profile for MLL-rearranged leukemias with consistent high-level expression of select Homeobox genes including HOXA9. Here, we investigated the effects of HOXA9 suppression in MLL-rearranged and MLL-germline leukemias utilizing RNAi. Gene expression profiling after HOXA9 suppression demonstrated co-downregulation of a program highly expressed in human MLL-AML (this study) and murine MLL-leukemia (Krivtsov et al. 2006) stem cells including HOXA10, MEIS1, PBX3 and MEF2C. Our data indicates an important role for HOXA9 in human MLL-rearranged leukemias, and suggests targeting HOXA9 or downstream programs may be a novel therapeutic option.

Publication Title

HOXA9 is required for survival in human MLL-rearranged acute leukemias.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52891
Gene expression profiles associated with pediatric relapsed AML
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In high income countries 90% of the patients achieve complete remission after induction chemotherapy. However, 30-40% of these patients suffer from relapse. These patients face a dismal prognosis, as the majority (>60%) of relapsed patients die within 5 years. As a result, outcome for pediatric acute myeloid leukemia (AML) patients remains poor and has stabilized over the past 15 years. To prevent or better treat relapse of AML is the best option to improve outcome. Despite patient specific differences, most patients do respond to initial therapy. This suggests that at relapse, mechanisms are active that cause the altered response to chemotherapy. Detailed understanding of mechanisms that cause relapse remain largely elusive. To gain insight in the molecular pathways that characterize relapsed AML, we performed genome wide gene expression profiling on paired initial diagnosis and relapsed AML samples of 23 pediatric AML patients. We used pathway analysis to find which molecular pathways are involved in altered gene expression between diagnosis and relapse samples of individual AML patients.

Publication Title

Gene expression profiles associated with pediatric relapsed AML.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE22056
High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia.
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

High VEGFC mRNA expression of AML blasts is related to increased in vitro and in vivo drug resistance. The prognostic significance of VEGFC on long-term outcome and its associated gene expression profiles remain to be defined. We studied the effect of VEGFC on treatment outcome and investigated gene expression profiles associated with VEGFC using microarray data of 525 adult and 100 pediatric AML patients. High VEGFC expression appeared strongly associated with reduced complete remission rate, reduced overall and event-free survival (OS and EFS) in adult AML. Multivariable analysis established high VEGFC as prognostic indicator independent of cytogenetic risk, FLT3-ITD, NPM1, CEBPA, age and WBC. Also in pediatric AML high VEGFC was related to reduced OS. A unique series of differentially expressed genes was identified that distinguished AML with high VEGFC from AML with low VEGFC, i.e., 331 upregulated genes (representative of proliferation, VEGF-receptor activity, signal transduction) and 44 downregulated genes (e.g. related to apoptosis) consistent with a role in enhanced chemoresistance. In conclusion, high VEGFC predicts adverse long-term prognosis and provides prognostic information in addition to well-known prognostic factors.

Publication Title

High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE83449
caArray_orkin-0038: Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Individuals with Down syndrome (DS) are predisposed to develop acute megakaryoblastic leukemia (AMKL), characterized by expression of truncated GATA1 transcription factor protein (GATA1s) due to somatic mutation. The treatment outcome for DS-AMKL is more favorable than for AMKL in non-DS patients. To gain insight into gene expression differences in AMKL, we compared 24 DS and 39 non-DS AMKL samples. We found that non-DS-AMKL samples cluster in two groups, characterized by differences in expression of HOX/TALE family members. Both of these groups are distinct from DS-AMKL, independent of chromosome 21 gene expression. To explore alterations of the GATA1 transcriptome, we used cross-species comparison with genes regulated by GATA1 expression in murine erythroid precursors. Genes repressed after GATA1 induction in the murine system, most notably GATA-2, MYC, and KIT, show increased expression in DS-AMKL, suggesting that GATA1s fail to repress this class of genes. Only a subset of genes that are up-regulated upon GATA1 induction in the murine system show increased expression in DS-AMKL, including GATA1 and BACH1, a probable negative regulator of megakaryocytic differentiation located on chromosome 21. Surprisingly, expression of the chromosome 21 gene RUNX1, a known regulator of megakaryopoiesis, was not elevated in DS-AMKL. Our results identify relevant signatures for distinct AMKL entities and provide insight into gene expression changes associated with these related leukemias.

Publication Title

Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE17855
Expression data from pediatric AML patients
  • organism-icon Homo sapiens
  • sample-icon 213 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Pediatric acute myeloid leukemia (AML) is a heterogeneous disease characterized by non-random genetic aberrations related to outcome. Detecting these aberrations however still lead to failures or false negative results. Therefore, we focused on the potential of gene expression profiles (GEP) to classify pediatric AML.

Publication Title

Evaluation of gene expression signatures predictive of cytogenetic and molecular subtypes of pediatric acute myeloid leukemia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE49814
Genome-wide cheater screen reveals safeguards for cell cooperation during embryogenesis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ensuring cooperation among formerly autonomous cells has been a central challenge in the evolution of multicellular organisms. One solution is monoclonality, but this option does not eliminate genetic and epigenetic variability, leaving room for exploitative behavior. We therefore hypothesized that embryonic development must be protected by robust regulatory mechanisms that prevent aberrant clones from superseding wild-type cells. Using a genome-wide screen in murine induced pluripotent stem cells, we identified a network of genes (centered on p53, topoisomerase 1, and olfactory receptors) whose downregulation caused the cells to replace wild-type cells, both in vitro and in the mouse embryowithout perturbing normal development. These genes thus appear to fulfill an unexpected role in fostering cell cooperation.

Publication Title

Safeguards for cell cooperation in mouse embryogenesis shown by genome-wide cheater screen.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46853
To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The present study aims to explore the role of Rim15 in both physiology and genome wide expression in S. cerevisiae under severe caloric restriction. Non-growing but metabolically active cultures of S. cerevisiae are of major interest for application in industry and as model systems for aging in higher eukaryotes. Using retentostat cultivations, almost non-growing but metabolic active cultures can be obtained resulting from the severe caloric restriction, yet not starvation, yeast experiences. Rim15 plays an important role in several nutrient sensing pathways and is involved in activating stress response and glycogen accumulation upon nutrient shortage. To investigate the role of Rim15 in the extreme robustness and glycogen accumulation of anaerobic retentostat cultures, a rim15 deletion strain is compared with its parental strain under anaerobic calorie restriction on both physiology and transcriptome.

Publication Title

To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057125
Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury
  • organism-icon Mus musculus
  • sample-icon 747 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Heterogeneous pools of adult neural stem cells (NSCs) contribute to brain maintenance and regeneration after injury. The balance of NSC activation and quiescence, as well as the induction of lineage-specific transcription factors, may contribute to diversity of neuronal and glial fates. To identify molecular hallmarks governing these characteristics, we performed single-cell sequencing of an unbiased pool of adult subventricular zone NSCs. This analysis identified a discrete, dormant NSC subpopulation that already expresses distinct combinations of lineage-specific transcription factors during homeostasis. Dormant NSCs enter a primed-quiescent state before activation, which is accompanied by downregulation of glycolytic metabolism, Notch, and BMP signaling and a concomitant upregulation of lineage-specific transcription factors and protein synthesis. In response to brain ischemia, interferon gamma signaling induces dormant NSC subpopulations to enter the primed-quiescent state. This study unveils general principles underlying NSC activation and lineage priming and opens potential avenues for regenerative medicine in the brain. Overall design: Single cell RNAseq of cells isolated from their in vivo niche in the subventricular zone, Striatum and Cortex during homeostasis as well as following ischemic injury. In total 272 single cells. (<WT>: homeostasis samples; <Ischemic_injured> and <Ischemic_injured_and_Interferon_gamma_knockout>: samples following ischemic injuried).

Publication Title

Single-Cell Transcriptomics Reveals a Population of Dormant Neural Stem Cells that Become Activated upon Brain Injury.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact