We used microarrays to investigate gene expression changes induced by the inhibition of RRAS2 expression using shRNA techniques to stably knockdown the endogenous transcripts of this GTPase in human MDA-MB-231-Luc cells.
Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Sex, Age, Specimen part, Disease, Cell line
View SamplesThe 1q gain is related to poor survival, and to a profile of cell cycle deregulation in Ewing's Sarcoma (ES). Tumor samples with 1q gain overexpress the gene DTL.
1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma.
Disease, Cell line
View SamplesRepA-WH1 is a synthetic bacterial prionoid, i.e., a protein that aggregates as amyloid in bacteria leading to cell death
Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid.
Disease, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Specimen part, Cell line, Treatment, Subject
View SamplesTyrosine kinase inhibitors (TKIs), despite efficacy as anti-cancer therapies, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We have utilized patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen FDA-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a cardiac safety index to assess cardiotoxicities of existing TKIs. Many TKIs with a low cardiac safety index exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that VEGFR2/PDGFR-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. Using phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Activating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during co-treatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anti-cancer TKIs, correlating with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.
High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells.
Treatment, Subject
View Samples