We have characterized a mutation affecting the Arabidopsis EARLY IN SHORT DAYS 7 (ESD7) gene encoding the catalytic subunit of the DNA polymerase epsilon (e), AtPOL2A. esd7-1 mutations causes early flowering independently of photoperiod, shortened inflorescence internodes and altered leaf and root development. esd7-1 was a hypomorphic allele whereas KO alleles displayed an embryo-lethal phenotype. The SAM and the RAM in the esd7-1 seedlings were found to exhibit an altered disposition that might correlate with the abnormal expression pattern of SAM and RAM marker genes. esd7-1 showed higher sensitivity to DNA damaging reagents than wild type plants and altered expression of genes involved in DNA repair mechanisms by homologous recombination. Moreover, esd7 early flowering phenotype requires functional FT and SOC1 proteins and might be also related to the mis-regulation of AG and AG-like gene expression found in esd7. Loci involved in the modulation of the chromatin structural dynamics, such as TFL2 and EBS, which negatively regulate FT expression, were found to interact genetically with ESD7, and the carboxy terminus of ESD7 interacted with TFL2 in vitro. Besides, fasciata2 (fas2) mutations suppressed esd7 early flowering phenotype and INCURVATA 2 (ICU2) was found to be epistatic to ESD7. Discrete regions of the chromatin of FT and AG loci were enriched in activating epigenetic marks in the esd7-1 mutant. We concluded that ESD7 might be participating in processes involved in chromatin-mediated cellular memory.
EARLY IN SHORT DAYS 7 (ESD7) encodes the catalytic subunit of DNA polymerase epsilon and is required for flowering repression through a mechanism involving epigenetic gene silencing.
Specimen part
View SamplesOur studies identify the role of mIR-28 in germinal center response and its therapeutic potential for the treatment of non-Hodgkin lymphomas Overall design: The effect of miR-28 expression in the transcriptome was analyzed in Ramos Burkitt B cells by RNASeq.
miR-28 regulates the germinal center reaction and blocks tumor growth in preclinical models of non-Hodgkin lymphoma.
Treatment, Subject
View SamplesTrisomy 21 (Ts21) or Down syndrome (DS) is the most common genetic cause of intellectual disability. To investigate the consequences of Ts21 on human brain development, we have systematically analyzed the transcriptome of dorsolateral prefrontal cortex (DFC) and cerebellar cortex (CBC) using exon array mapping in DS and matched euploid control brains spanning from prenatal development to adulthood. We identify hundreds of differentially expressed (DEX) genes in the DS brains, many of which exhibit temporal changes in expression over the lifespan. To gain insight into how these DEX genes may cause specific DS phenotypes, we identified functional modules of co-expressed genes using several different bioinformatics approaches, including WGCNA and gene ontology analysis. A module comprised of genes associated with myelination, including those dynamically expressed over the course of oligodendrocyte development, was amongst those with the great levels of differential gene expression. Using Ts65Dn mouse line, the most common rodent model of DS, w e observed significant and novel defects in oligodendrocyte maturation and myelin ultrastructure; establishing a correlative proof-of-principle implicating myelin dysgenesis in DS. Thus, examination of the spatio-temporal transcriptome predicts specific cellular and functional events in the DS brain and is an outstanding resource for determining putative mechanisms involved in the neuropathology of DS.
Down Syndrome Developmental Brain Transcriptome Reveals Defective Oligodendrocyte Differentiation and Myelination.
Sex, Disease, Race
View SamplesExamining the transcriptomic changes during transdifferentiation of peripheral blood mononuclear cells to induced neuronal cells. Overall design: There are three different populations: PBMC (2 biological replicates, starting population), PSA-NCAM+GFP+ (2 biological replicates, induced neuronal cells) and PSA-NCAM+GFP- (2 biological replicates, induced neuronal cells).
Transdifferentiation of human adult peripheral blood T cells into neurons.
Specimen part, Subject
View SamplesBackground: Inter-patient prostate cancer (PrCa) heterogeneity results in highly variable patient outcomes. Multi-purpose biomarkers to dissect this heterogeneity are urgently required to improve treatment and accelerate drug development in PrCa. Circulating biomarkers are most practical for evaluating this disease. We pursued the analytical validation and clinical qualification of blood mRNA expression arrays.
Prognostic value of blood mRNA expression signatures in castration-resistant prostate cancer: a prospective, two-stage study.
Subject
View SamplesEthnically diverse - African American, Hispanic Latino, Asian - induced pluripotent stem cell lines bioinformatics data
Derivation of Ethnically Diverse Human Induced Pluripotent Stem Cell Lines.
No sample metadata fields
View SamplesGene expression changes in 3 human melanoma cell lines were compared to freshly isolated normal primary melanocytes Overall design: Three biological replicates for each melanoma cell line and primary melanocytes were labeled and run Illumina HiSeq2500. The transcriptome of melanocytes was compared to cell line SK-Mel-28, SK-Mel-147 or UACC-62.
Systems analysis identifies melanoma-enriched pro-oncogenic networks controlled by the RNA binding protein CELF1.
Specimen part, Subject
View SamplesPurpose: Asess the transcritpional changes induced upon RAB7 knock-down in melanoma (SK-Mel-28 and UACC-62) and in colon cancer (HCT-116) cell lines. Methods: mRNA profiles of tumor cell lines (SK-Mel-28, UACC-62, HCT-116) stably expressing scrambled shRNA or RAB7 shRNA (harvested at day 3 after lentiviral infection) were generated by deep sequencing, using three biological replicates per condition. The sequence reads that passed quality filters were analyzed with TopHat and Cufflinks. Validation of induced / silenced genes was performed by western blot. Results show a differential impact of RAB7 expression in the transcriptomic profile of melanoma vs non-melanoma cell lines, and support a lineage-specific role of this small GTPase in melanoma. Overall design: Examination of the mRNA profiles RAB7-depleted vs wild type cells, performed in parallel in 3 different tumor cell lines (Melanomas: SK-Mel-28 and UACC-62, Non-melanoma: HCT-116) harvested at day 3 after lentiviral infection.
RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway.
Cell line, Treatment, Subject, Time
View SamplesGene expression analysis in hLECs treated with gain of function or loss of function of MDK in human melanoma cells. Overall design: Biological triplicates of hLEC treated for 3 days with EGM-2 MV conditioned media of melanoma cells. Cell line SK-Mel-147 KD for MDK (shMDK) and its corresponding control (shCtrl (LoF) and WM164 cell line overexpressing MDK (MDK) or an empty vector (NEG) (GoF) were used to produce the conditioned media.
Whole-body imaging of lymphovascular niches identifies pre-metastatic roles of midkine.
Specimen part, Subject
View SamplesReliable identification of cancer markers can have substantial implications to early detection of cancer. We report here an integrated computational and experimental study on identification of gastric cancer markers in patients tissue and sera based on (i) genome-scale transcriptomic analyses on 80 paired gastric cancer/reference tissues, with the aim of identifying abnormally expressed genes at various subtypes/stages of gastric carcinoma (ii) a computational identification of differentially expressed genes that may have their proteins secreted into blood circulation, followed by experimental validations.
An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer.
Sex, Age, Specimen part, Disease stage
View Samples