refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1568 results
Sort by

Filters

Technology

Platform

accession-icon SRP066152
Transcriptome-wide regulation of pre-mRNA splicing and expression by the RNA-binding protein Quaking during monocyte to macrophage differentiation [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes of early, human atherosclerotic lesions, but abundant in macrophages of advanced plaques. Specific depletion of QKI protein impaired monocyte adhesion, migration, differentiation into macrophages, and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, revealed striking changes in QKI-dependent mRNA levels and splicing of RNA transcripts. Overall design: RNA-seq analysis of primary monocytes and macrophages from a QKI haploinsufficient patient and their (control) sibling.

Publication Title

Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066619
A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation [human cell line RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report gene expression data for human melanoma cell lines using RNAseq. Overall design: RNAseq was performed on 8 melanoma cell lines and one normal human melanocyte cell line. All done as single replicates, except for two biological replicates of A375.

Publication Title

A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP066621
A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation [zebrafish RNA-Seq]
  • organism-icon Danio rerio
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We report gene expression data for FACS sorted zebrafish crestin_1kb:EGFP + cells collected at 15 somite stage (SS). Overall design: crestin_1kb:EGFP + embryos were homogenized, filtered, and sorted using FACS into PBS, collecting ~5,500 EGFP (+) cells and 100K EGFP (-) cells with a single sample for each.

Publication Title

A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35554
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression
  • organism-icon Mus musculus, Drosophila melanogaster, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE35552
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression (2)
  • organism-icon Drosophila melanogaster
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.

Publication Title

Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP010780
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression (3)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD. Overall design: The RNA sequencing libraries were constructed from the liver RNA of 3-4-month Smarcal1del/del and wt female mice (n=3/group) at 20°C and after 1 hour at 39.5°C. These libraries were sequenced using the whole transcriptome shotgun sequencing procedure.

Publication Title

Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE35551
Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression (1)
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Biallelic mutations of the DNA annealing helicase SMARCAL1 (SWI/SNF-related matrix-associated actin-dependent regulator of chromatin, subfamily a-like 1) cause Schimke immuno-osseous dysplasia (SIOD, MIM 242900), an incompletely penetrant autosomal recessive disorder. Using human, Drosophila, and mouse models, we show that the proteins encoded by SMARCAL1 orthologues localize to transcriptionally active chromatin and modulate gene expression. We also show that similar to SIOD patients, deficiency of the SMARCAL1 orthologues alone is insufficient to cause disease in fruit flies and mice although such deficiency causes modest diffuse alterations in gene expression. Rather, disease manifests when SMARCAL1 deficiency interacts with genetic and environmental factors that further alter gene expression. We conclude that the SMARCAL1 annealing helicase buffers fluctuations in gene expression and that alterations in gene expression contribute to the penetrance of SIOD.

Publication Title

Penetrance of biallelic SMARCAL1 mutations is associated with environmental and genetic disturbances of gene expression.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP057452
Nucleotide stress induction of HEXIM1 suppresses melanoma by modulating cancer cell-specific gene transcription [RNA-Seq1]
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cancer metabolism has been actively studied to gain insights into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a novel melanoma suppressor that participates in nucleotide stress regulation. HEXIM1 expression is low in melanoma. Its overexpression suppresses melanoma while its inactivation accelerates tumor onset in vivo. HEXIM1 responds to nucleotide stress. Knockdown of HEXIM1 rescues neural crest and melanoma nucleotide stress phenotypes in vivo. Mechanistically, under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to pause transcription at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic transcripts to bind to and be stabilized by HEXIM1. HEXIM1 therefore plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals a novel role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma. Overall design: RNA-seq analysis of human A375 melanoma cells treated with either DMSO or 25 µM A771726 for 0-72 hrs.

Publication Title

Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057453
Nucleotide stress induction of HEXIM1 suppresses melanoma by modulating cancer cell-specific gene transcription [RNA-Seq2]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Cancer metabolism has been actively studied to gain insights into tumorigenic survival mechanisms and susceptibilities. In melanoma, we identify HEXIM1, a transcription elongation regulator, as a novel melanoma suppressor that participates in nucleotide stress regulation. HEXIM1 expression is low in melanoma. Its overexpression suppresses melanoma while its inactivation accelerates tumor onset in vivo. HEXIM1 responds to nucleotide stress. Knockdown of HEXIM1 rescues neural crest and melanoma nucleotide stress phenotypes in vivo. Mechanistically, under nucleotide stress, HEXIM1 is induced to form an inhibitory complex with P-TEFb, the kinase that initiates transcription elongation, to pause transcription at tumorigenic genes. The resulting alteration in gene expression also causes anti-tumorigenic transcripts to bind to and be stabilized by HEXIM1. HEXIM1 therefore plays an important role in inhibiting cancer cell-specific gene transcription while also facilitating anti-cancer gene expression. Our study reveals a novel role for HEXIM1 in coupling nucleotide metabolism with transcriptional regulation in melanoma. Overall design: RNA-seq analysis of human Tet-On HEXIM1-inducible A375 melanoma cells treated with either DMSO or 1 µg/mL doxycycline in triplicate for 48 hrs.

Publication Title

Stress from Nucleotide Depletion Activates the Transcriptional Regulator HEXIM1 to Suppress Melanoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37707
Effects of the long noncoding RNA Malat1 on gene expression
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Malat1 is not an essential component of nuclear speckles in mice.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact