refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 3870 results
Sort by

Filters

Technology

Platform

accession-icon SRP194549
Acquired Resistance to BET-PROTACs(Proteolysis Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 ligase Complexes
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Exome and RNA sequencing of the parental OVCAR8 cell line and 2 cell lines that developed resistance to BET-PROTACS ARV-771 and ARV-825,

Publication Title

No associated publication

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26583
Expression data of overexpression of ABF-1 in SKW cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

ABF-1, a bHLH trancriptional repressor expresses in human activated B cells. Overexpression of ABF-1 in a SKW lymphoblastoid cells suppressed IgM production. We used cDNA microarray to identify genes under ABF-1 regulation.

Publication Title

Transcription factor ABF-1 suppresses plasma cell differentiation but facilitates memory B cell formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP095722
Mus musculus Transcriptome or Gene expression
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

PRMTs in neurodegeneration

Publication Title

No associated publication

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP048726
Transcriptome analysis during the shift from dark to blue light in Arabidopsis wild type Col-0 plants.
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Three-day-old wild-type Col-0 plants grown on filter paper in the dark, as described above, were exposed to blue light and harvested after 1 hour exposure. Total RNAs were extracted using Trizol reagent (Life Technologies) and purified by PureLink RNA Mini Kits (Life Technologies). Directional RNA-seq libraries were constructed using TruSeq Small RNA Sample Prep Kits and TruSeq RNA Sample Preparation Kits according to the Directional mRNA-Seq Library Prep. Manual (Illumina) and sequenced using a HiSeq sequencer (Illumina).

Publication Title

No associated publication

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE42081
Cross-Species Genome Wide Expression Analysis during Pluripotent Cell Determination in Mouse and Rat Preimplantation Embryos
  • organism-icon Mus musculus, Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The transition between morula and blastocyst stage during preimplantation development represents the first differentiation event of embryogenesis. Morula cells undergo the first cellular specialization and produce two well-defined populations of cells, the trophoblast and the inner cell mass (ICM). Embryonic stem cells (ESCs) with unlimited self-renewal capacity are believed to represent the in vitro counterpart of the ICM. Both mouse and rat ESCs can be derived from the ICM cells, but their in vitro stability differs. In this study we performed a microarray analysis in which we compared the transcriptome of mouse and rat morula, blastocyst, and ICM. This cross-species comparison represents a good model for understanding the differences in derivation and cultivation of ESCs observed in the two species. In order to identify alternative regulation of important molecular mechanisms the investigation of differential gene expression between the two species was extended at the level of signaling pathways, gene families, and single selected genes of interest. Some of the genes differentially expressed between the two species are already known to be important factors in the maintenance of pluripotency in ESCs, like for example Sox2 or Stat3, or play a role in reprogramming somatic cells to pluripotency like c-Myc, Klf4 and p53 and therefore represent interesting candidates to further analyze in vitro in the rat ESCs. This is the first study investigating the gene expression changes during the transition from morula to blastocyst in the rat preimplantation development. Our data show that in the pluripotent pool of cells of the rat and mouse preimplantation embryo substantial differential regulation of genes is present, which might explain the difficulties observed for the derivation and culture of rat ESCs using mouse conditions

Publication Title

Cross-species genome wide expression analysis during pluripotent cell determination in mouse and rat preimplantation embryos.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE37059
The role of SOX10 in human melanoma
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have shown that Sox10 plays a crucial role in the initiation and maintenance of giant congenital nevi and melanoma in a mouse model of melanoma.To dissect the molecular mechanisms and analyze the role of SOX10 in the maintenance of human melanoma, we have performed microarray study.

Publication Title

Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE52220
Expression data from E11.5 mouse branchial arch 1 (BA1) - comparison between Ezh2lox/lox and Wnt1Cre Ezh2lox/lox embryos
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Conditional ablation of Ezh2 in the neural crest lineage results in loss of the neural crest-derived mesenchymal derivatives. In this data sheet we determine gene expression analysis in Ezh2lox/lox and Wnt1Cre Ezh2lox/lox in E11.5 mouse BA1 cells.

Publication Title

Ezh2 is required for neural crest-derived cartilage and bone formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP073927
Laquinimod treated splenocyte samples in EAE and Naive mice
  • organism-icon Mus musculus
  • sample-icon 109 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

No description.

Publication Title

No associated publication

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment

View Samples
accession-icon SRP117955
Early pridopidine treatment in YAC128 Huntington disease mice
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNAseq of YAC128 mice treated with pridopidine

Publication Title

No associated publication

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment

View Samples
accession-icon SRP135819
Zea mays Transcriptome or Gene expression Ears Meristem FACS RNA-seq
  • organism-icon Zea mays
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

FACS RNAseq of transgenic lines pWUS and pYAB

Publication Title

No associated publication

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact