Certain oncolytic viruses exploit activated Ras signalling in order to replicate in cancer cells. Constitutive activation of the Ras/MEK pathway is known to suppress the effectiveness of the interferon (IFN) antiviral response, which may contribute to Ras-dependent viral oncolysis. Here, we identified 10 human cancer cell lines (out of 16) with increased sensitivity to the anti-viral effects of IFN- after treatment with the MEK inhibitor U0126, suggesting that the Ras/MEK pathway underlies their reduced sensitivity to IFN. To determine how Ras/MEK suppresses the IFN response in these cells, we used DNA microarrays to compare IFN-induced transcription in IFN-sensitive SKOV3 cells, moderately resistant HT1080 cells, and HT1080 cells treated with U0126. We found that 267 genes were induced by IFN in SKOV3 cells, while only 98 genes were induced in HT1080 cells at the same time point. Furthermore, the expression of a distinct subset of IFN inducible genes, that included RIGI, GBP2, IFIT2, BTN3A3, MAP2, MMP7 and STAT2, was restored or increased in HT1080 cells when the cells were co-treated with U0126 and IFN. Bioinformatic analysis of the biological processes represented by these genes revealed increased representation of genes involved in the anti-viral response, regulation of apoptosis, cell differentiation and metabolism. Furthermore, introduction of constitutively active Ras into IFN sensitive SKOV3 cells reduced their IFN sensitivity and ability to activate IFN-induced transcription. This work demonstrates for the first time that activated Ras/MEK in human cancer cells induces downregulation of a specific subset of IFN-inducible genes.
Suppression of IFN-induced transcription underlies IFN defects generated by activated Ras/MEK in human cancer cells.
Cell line, Treatment, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
No associated publication
Cell line, Treatment
View SamplesParathyroid hormone (PTH) plays an essential role in regulating calcium and bone homeostasis in the adult, but whether PTH is required at all for regulating fetal-placental mineral homeostasis is uncertain. To address this we treated Pth-null mice in utero with 1 nmol PTH (1-84) or saline and examined placental calcium transfer 90 minutes later. It was found that placental calcium transfer increased in Pth-null fetuses treated with PTH as compared to Pth-null fetuses treated with saline. Subsequently, to determine the effect of PTH treatment on placental gene expression, in a separate experiment, 90 minutes after the fetal injections the placentas were removed for subsequent RNA extraction and microarray analysis.
Parathyroid hormone regulates fetal-placental mineral homeostasis.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
LPS independent activation of the pro-inflammatory receptor Trem1 by C/EBPε in granulocytes.
Specimen part
View SamplesOncolytic viruses exploit common molecular changes in cancer cells, which are not present in normal cells, to target and kill cancer cells. Ras transformation and defects in type I interferon (IFN)-mediated antiviral responses are known to be the major mechanisms underlying viral oncolysis. Previously, we demonstrated that oncogenic RAS/Mitogen-activated protein kinase kinase (Ras/MEK) activation suppresses the transcription of many IFN-inducible genes in human cancer cells, suggesting that Ras transformation underlies type I IFN defects in cancer cells. Here, we investigated how Ras/MEK downregulates IFN-induced transcription. By conducting promoter deletion analysis of IFN-inducible genes, namely guanylate-binding protein 2 and IFN gamma inducible protein 47 (Ifi47), we identified the IFN regulatory factor 1 (IRF1) binding site as the promoter region responsible for the regulation of transcription by MEK. MEK inhibition promoted transcription of the IFN-inducible genes in wild type mouse embryonic fibroblasts (MEFs), but not in IRF1/ MEFs, showing that IRF1 is involved in MEK-mediated downregulation of IFN-inducible genes. Furthermore, IRF1 protein expression was lower in RasV12 cells compared with vector control NIH3T3 cells, but was restored to equivalent levels by inhibition of MEK. Similarly, the restoration of IRF1 expression by MEK inhibition was observed in human cancer cells. IRF1 re-expression in human cancer cells caused cells to become resistant to infection by the oncolytic vesicular stomatitis virus strain. Together, this work demonstrates that Ras/MEK activation in cancer cells downregulates transcription of IFN-inducible genes by targeting IRF1 expression, resulting in increased susceptibility to viral oncolysis.
Oncogenic Ras inhibits IRF1 to promote viral oncolysis.
No sample metadata fields
View SamplesPrevious in vitro studies in our lab have shown that CD24, a cell surface receptor, actively regulates lipid accumulation in adipocytes. But how CD24 regulates this process remains unknown. In order to answer this question, we initially tested to determine if CD24 regulates lipid accumulation by regulating glucose uptake in adipocytes in vitro. We observed that instead, CD24 caused the dysregulation of the expression of 134 genes as determined by DNA microarray analysis. We then validated the expression of select four genes, when CD24 is knocked down during the different stages of adipogenesis in 3T3-L1 pre-adipocytes in vitro. To further confirm the role of these genes, we then determined the expression patterns of these four genes in primary cells undergoing adipogenesis that were isolated from the epididymal and inguinal white adipose tissue depots of CD24 knockout mice. Surprisingly, we found that these genes were dysregulated in the inguinal but not the epididymal depot in vitro. Overall, the data presented here suggests that CD24 is necessary for select gene expression, but not glucose uptake, during adipogenesis in vitro.
CD24 is required for regulating gene expression, but not glucose uptake, during adipogenesis.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
DNMT1-interacting RNAs block gene-specific DNA methylation.
Cell line, Treatment
View SamplesLipoprotein lipase (LPL) is an extracellular lipase that preferentially hydrolyses triglycerides in triglyceride-rich lipoproteins within the circulation. LPL expression in macrophages contributes to atherosclerosis. In addition, the hydrolysis products liberated from lipoprotein lipids by LPL causes lipid accumulation and impairs cholesterol efflux ability in macrophages. However, the effects of LPL hydrolysis products in modulating the transcript profiles within macrophages and their roles in foam cell formation are not completely understood.
No associated publication
Specimen part
View SamplesTo identify target genes of C/EBPepsilon in differentiated granulocytes, total RNA were purified from sorted Gr-1intermediate/Mac-1+ and Gr-1hi/Mac-1+ cells of C/EBPepsilon knock out and C57BL/6 wild type mice using RNeasy Mini Kit (Qiagen). The differences of their expression pattern were compared with Illumina Mouse WG-6v2 Expression Chip platform. Raw Illumina BeadArray data in IDAT format were preprocessed using the open-source Bioconductor package illuminaio with the Illumina array design formation BGX file downloaded from NCBI, GEO accession: GPL6887. Following the preprocessing, the expression data were normalized by applying control background correction, log transformation and inter-quantile normalization using the neqc function from the limma bioconductor package. This allowed us to compare the transcriptomic consequences of C/EBPepsilon in two independent populations.
LPS independent activation of the pro-inflammatory receptor Trem1 by C/EBPε in granulocytes.
Specimen part
View SamplesHigh quality genetic material is an essential pre-requisite when analyzing gene expression using microarray technology. Peripheral blood mononuclear cells (PBMC) are frequently used for genomic analyses, but several factors can affect the integrity of nucleic acids prior to their extraction, including the methods of PBMC collection and isolation. In this study, we compared the Ficoll-Paque density gradient centrifugation and BD Vacutainer cell preparation tube (CPT) protocols to determine if either method offered a distinct advantage in preparation of PBMC-derived immune cell subsets for their use in gene expression analysis. We compared gene expression in PBMC and individual immune cell types from Ficoll and CPT isolation protocols using Affymetrix microarrays.
Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT™) and standard density gradient.
Specimen part
View Samples