S. reilianum triggered loss of organ and meristem identity, and loss of meristem determinacy in male and female inflorescences and flowers. Microarray analysis showed that these developmental changes were accompanied with transcriptional regulation of genes proposed to regulate floral organ and meristem identity, and meristem determinacy in maize.
Sporisorium reilianum infection changes inflorescence and branching architectures of maize.
Specimen part, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
Specimen part, Cell line
View SamplesComparative transcriptome profiles of cotton (G. hirsutum L. cv. Bikaneri narma) during boll development stages (0, 2, 5 and 10 dpa) under bollworm infested biotic stress.
No associated publication
Specimen part, Time
View SamplesThis is a comprehensive genomic characterization of 40 urothelial bladder carcinoma (UBC) cell lines including information on origin, mutation status of genes implicated in bladder cancer (FGFR3, PIK3CA, TP53, and RAS), copy number alterations assessed using high density SNP arrays, uniparental disomy (UPD) events, and gene expression. Based on gene mutation patterns and genomic changes we identify lines representative of the FGFR3-driven tumor pathway and of the TP53/RB tumor suppressor-driven pathway. High-density array copy number analysis identified significant focal gains (1q32, 5p13.1-12, 7q11, and 7q33) and losses (i.e. 6p22.1) in regions altered in tumors but not previously described as affected in bladder cell lines. We also identify new evidence for frequent regions of UPD, often coinciding with regions reported to be lost in tumors. Previously undescribed chromosome X losses found in UBC lines also point to potential tumor suppressor genes. Cell lines representative of the FGFR3-driven pathway showed a lower number of UPD events. Overall, there is a predominance of more aggressive tumor subtypes among the cell lines. We provide a cell line classification that establishes their relatedness to the major molecularly-defined bladder tumor subtypes. The compiled information should serve as a useful reference to the bladder cancer research community and should help to select cell lines appropriate for the functional analysis of bladder cancer genes, for example those being identified through massive parallel sequencing.
The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies.
Specimen part, Cell line
View SamplesExpression profiling of Xenografts of Hepatocellular Carcinoma
Bevacizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.
Specimen part
View SamplesThe IRE1 Rnase domain has been implicated in the pathology of triple negative breast cancer (TNBC), a disease with limited treatment options. The IRE1 Rnase mediates it's effects on the transcriptome via activation of the trancription factor XBP1s and via direct cleavage of mRNA through a process called RIDD. The processes through which the RNase domain contributes to TNBC is not fully understood.
No associated publication
Cell line, Treatment
View SamplesBackground: Exosomes are nanovesicles of endocytic origin believed to be involved in communication between cells. Recently, it has been shown that mast cell exosomes contain RNA named "exosomal shuttle RNA". The aim of this study was to evaluate whether exosomal shuttle RNA could play a role in the communication between human mast cells and between human mast cells and human CD34 positive progenitor cells. Results: Exosomes from the human mast cell line HMC-1 contain RNA. The exosomes contain no or very little ribosomal RNA compared to their donor cells. The mRNA and microRNA content in exosomes and their donor cells was examined using microarray analyses. We found 116 microRNA in the exosomes and 134 microRNA in the cells, from which some were expressed at different level. DNA microarray experiments revealed the presence of approximately 1800 mRNAs in the exosomes, which represent 15% of the donor cell mRNA content. Transfer experiments revealed that exosomes and their RNA can transfer to other HMC-1 cells and to CD34 positive progenitors. Conclusions: To conclude, HMC-1 exosomes contain mRNA and microRNA that can be transferred to other mast cells and to CD34 progenitors. This shuttle of exosomal RNA may represent a powerful mode of communication between cells where cells send genetic information to other cells over a distance via exosomes.
Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells.
Cell line
View SamplesOverexpression lines of MYB63 and MYB63/LAC17 were generated to test hypotheses of monolignol export. Transcriptomic analysis was performed to characterize the dwarf, monolignol-glucoside containing MYB63-OX lines, as well as the MYB63/LAC17-OX lines.
No associated publication
Specimen part
View SamplesCD4+ T cells differentiate into phenotypically distinct T-helper cells upon antigenic stimulation. Regulation of plasticity between these CD4+ T-cell lineages is critical for immune homeostasis and prevention of autoimmune diseases. However, the factors that regulate lineage stability are largely unknown. Here we investigate a role for retinoic acid (RA) in the regulation of lineage stability using T helper 1 (Th1) cells, traditionally considered the most phenotypically stable Th subset. We found that RA, through its receptor RARa, sustains stable expression of Th1 lineage specifying genes as well as repressing genes that instruct Th17 cell fate. RA signaling is essential for limiting Th1 cell conversion into Th17 effectors and for preventing pathogenic Th17 responses in vivo. Our studies identify RA-RARa as a key component of the regulatory network governing Th1 cell fate and define a new paradigm for the development of pathogenic Th17 cells. These findings have important implications for autoimmune diseases in which dysregulated Th1-Th17 responses are observed.
Retinoic acid is essential for Th1 cell lineage stability and prevents transition to a Th17 cell program.
No sample metadata fields
View Samples