Analyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesAnalyses of six Ts1Cje (Down syndrome) and six normal littermate (2N) mouse brains at postnatal day 0.
Dosage-dependent over-expression of genes in the trisomic region of Ts1Cje mouse model for Down syndrome.
No sample metadata fields
View SamplesGenome-wide transcriptional profiling allows characterization of the molecular underpinnings of neocortical organization, including cortical areal specialization, laminar cell type diversity and functional anatomy. Microarray analysis of individual cortical layers across sensorimotor and association cortices in rhesus macaque demonstrated robust and specific laminar and areal molecular signatures driven by differential expression of genes associated with specialized neuronal function. Gene expression corresponding with laminar architecture was generally similar across cortical areas, although genes with robust areal patterning were often highly laminar as well, and these patterns were more highly conserved between macaque and human as compared to mouse. Layer 4 of primate primary visual cortex displayed a distinct molecular signature compared to other cortical regions, a specialization not observed in mouse. Overall, transcriptome-based relationships were strongest between proximal layers in a cortical area, and between neighboring areas along the rostrocaudal axis, reflecting in vivo cortical spatial topography and therefore a developmental imprint.
Transcriptional architecture of the primate neocortex.
Sex, Specimen part, Disease
View SamplesWe sought to find molecular signatures of the SGZ cell types, and to characterize the molecular pathways and transcription factor cascades that define the neurogenic niche. We used laser capture microdissection and DNA microarrays to profile gene expression in the inner (SGZ) and outer portions of the dentate gyrus (DG). Since the vast majority of the cells in the DG are mature granule cells, we compared the expression of the inner and outer portions to reveal molecular markers for the less numerous populations of the SGZ.
Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates.
Sex, Specimen part
View SamplesCockayne syndrome is a segmental progeria most often caused by mutations in the CSB gene encoding a SWI/SNF-like ATPase required for transcription-coupled DNA repair (TCR). Over 43 Mya before marmosets diverged from humans, a piggyBac3 (PGBD3) transposable element integrated into intron 5 of the CSB gene. As a result, primate CSB genes now generate both CSB protein and a conserved CSB-PGBD3 fusion protein in which the first 5 exons of CSB are alternatively spliced to the PGBD3 transposase. We show by microarray analysis that expression of the fusion protein alone in CSB-null UV-sensitive syndrome cells (UVSS1KO) cells induces an interferon-like response that resembles both the innate antiviral response and the prolonged interferon response normally maintained by unphosphorylated STAT1 (U-STAT1); moreover, as might be expected based on conservation of the fusion protein, this potentially cytotoxic interferon-like response is largely reversed by coexpression of functional CSB protein. Interestingly, expression of CSB and the CSB-PGBD3 fusion protein together, but neither alone, upregulates the insulin growth factor binding protein IGFBP5 and downregulates IGFBP7, suggesting that the fusion protein may also confer a metabolic advantage, perhaps in the presence of DNA damage. Finally, we show that the fusion protein binds in vitro to members of a dispersed family of 900 internally deleted piggyBac elements known as MER85s, providing a potential mechanism by which the fusion protein could exert widespread effects on gene expression. Our data suggest that the CSB-PGBD3 fusion protein is important in both health and disease, and could play a role in Cockayne syndrome.
The conserved Cockayne syndrome B-piggyBac fusion protein (CSB-PGBD3) affects DNA repair and induces both interferon-like and innate antiviral responses in CSB-null cells.
Specimen part, Cell line
View SamplesThe FANTOM5 promoter expression atlas provides a rich source of expression and functional annotation of human and mouse cell-type specific transcriptomes with wide applications in biomedical research.
An atlas of human long non-coding RNAs with accurate 5' ends.
No sample metadata fields
View SamplesRecent research hints at an underappreciated complexity in pre-miRNA processing and regulation. Global profiling of pre-miRNA and its potential to increase understanding of the pre-miRNA landscape is impeded by overlap with highly-expressed classes of other non-coding RNA. Here we present a dataset excluding these RNA before sequencing through locked nucleic acids (LNA), greatly increasing pre-miRNA sequence counts with no discernable effects on pre-miRNA or mature miRNA sequencing. Analysis of profiles generated in total, nuclear, and cytoplasmic cell fractions reveals pre-miRNAs are subject to a wide range of regulatory processes involving loci-specific 3'- and 5'-end variation entailing complex cleavage patterns with co-occurring polyuridylation. Additionally, examination of nuclear-enriched flanking sequences of pre-miRNA, particularly those derived from polycistronic miRNA transcripts, provides insight into miRNA and miRNA-offset (moRNA) production. Our findings point to particularly intricate regulation of the let-7 family, introduce novel and unify known forms of pre-miRNA regulation and processing, and shed new light on the byproducts of miRNA processing pathways. none provided
pre-miRNA profiles obtained through application of locked nucleic acids and deep sequencing reveals complex 5'/3' arm variation including concomitant cleavage and polyuridylation patterns.
No sample metadata fields
View SamplesExcessive inflammation within the central nervous system is injurious, but an immune response is also required for its repair. Macrophages are versatile cells that adopt different properties depending upon their microenvironment. Exposing macrophages to interleukin-4 and -13 (IL4/IL13) has incurred interest for their reparative properties. Unexpectedly, while macrophages exposed to the classic pro-inflammatory signals (interferon-γ/lipopolysaccharide, IFN/LPS) killed neurons and oligodendrocytes in culture, the addition of LPS to IL4/IL13-treated macrophages profoundly elevated IL10, repair metabolites (lactate, ornithine), glucose metabolism and the oligodendrocyte-trophic heparin-binding epidermal growth factor (HBEGF); cells did not display pro-inflammatory or neurotoxic features.
No associated publication
Specimen part, Treatment
View SamplesSpade/Spade mutant develop the spontaneous progressive atopic dermatitis like skin inflammation at around 8-10 weeks after birth. In order to detect the pre-symptomatic events that occur in their ear tissue, we have sampled RNA from the whole ear tissue and identified the differentially expressed genes with twofolds difference in comparison with littermate wildtype ear tissue RNA samples.
No associated publication
Age, Specimen part
View Samples